NI-43-101 TECHNICAL REPORT ON THE TEELS MARSH PROPERTY MINERAL COUNTY, NEVADA, USA

Prepared for HeliosX Lithium & Technologies Corp.

Vancouver, BC, Canada

Authors: John Gorham, P. Geol., and Trevor Mills, P.G., SME-RM

Effective Date: February 1, 2022

Dahrouge Geological Consulting Ltd.

Suite 103, 10183-112 Street, Edmonton, Alberta T5K 1M1, Canada Tel: +1 (780) 434-9808

Table of Contents

1	Sun	nmary	1			
	1.1	Property Description	1			
	1.2	Mineral Tenure	1			
	1.3	Geology and Mineralization	1			
	1.4	Development and Operations	4			
	1.5	Conclusions and Recommendations	4			
2	Intr	roduction	6			
3	Reli	iance on Other Experts	7			
4	Pro	perty Description and Location	8			
	4.1	Location	8			
	4.2	Mineral Tenure	9			
	4.3	Environmental Liabilities				
	4.4	Required Permits				
		4.4.1 Water Rights				
		4.4.2 Exploration Permit				
	4.5	Geothermal Leases				
	4.6	Other Significant Factors and Risks				
5	Acc	essibility, Climate, Local Resources, Infrastructure, and Physiography				
	5.1	Access, Infrastructure and Local Resources				
	5.2	Topography, Elevation, and Vegetation				
	5.3	5.3 Climate				
6	History					
	6.1	Borate and Salt Mining				
	6.2	Groundwater Exploration and Research Activities				
	6.3	Lithium Exploration				
	6.4	Geothermal Exploration				
	6.5	Dajin Previous Exploration				

		6.5.1	Auger Geochemical Sampling	20
		6.5.2	Gravity and Magnetic Survey	20
		6.5.3	Basin Modelling	21
		6.5.4	Reflection Seismic Survey	23
	6.6	Dajin	Drilling	23
7	Geo	logical S	Setting and Mineralization	27
	7.1	Region	al Geology	27
	7.2	Prope	erty Geology	27
		7.2.1	Local Geology	27
		7.2.2	Structural Geology	
	7.3	Miner	ralization and Alteration	
		7.3.1	Lithium and Boron in Brines and Sediments	
		7.3.2	Alteration	35
		7.3.3	Borate Mineralization	35
		7.3.4	Geothermal Activity	
	7.4	Hydro	ogeologic Setting	
		7.4.1	Basin Characteristics	
		7.4.2	Potential Sources of Lithium	
		7.4.3	Aquifers	
		7.4.4	Geothermal Activity	
		7.4.5	Fluid Flow Patterns	
8	Dep	osit Typ	oe	
9	Exp	loration	l	
	9.1	Acces	s Construction	
	9.2	Surfac	ce Samples	
10	Dril	ling		
11	Sam	ple Prej	paration, Analyses, and Security	
	11.1	Fiel	ld Sample Preparation	
	11.2	San	nple Security	50

	11.3	Laboratory Sample Preparation and Analysis	.50
	11.4	Quality Assurance and Quality Control (QA/QC)	.51
12	Data Ve	rification	.52
13	Mineral	Processing and Metallurgical Testing	.58
14	Mineral	Resource Estimates	.59
15	to 22 – 1	Not Applicable (Early-Stage Project)	.60
23	Adjacen	t Properties	.61
24	Other R	elevant Data and Information	.62
25	Interpro	etation and Conclusions	.63
26	Recomm	nendations	.65
27	Referen	ces	.67
28	Date an	d Signature Page	.73
29	Certifica	ate of Qualified Persons	.74
30	Consent	t of Qualified Persons	.76
APPE	NDIX 1:	Details of HeliosX Teels Marsh Placer Claims	.78
APPE	NDIX 2:	Assay Certificates for the 2019 QP Samples	.90

LIST OF FIGURES

Figure 1-1	Teels Marsh Property Location	2
Figure 4-1	Location of the Teels Marsh Property	8
Figure 4-2	Map of Teels Marsh Property Tenures	10
Figure 6-1	Historical Geothermal Exploration, springs, borate, and	16
Figure 6-2	Location of water wells and auger holes	17
Figure 6-3	Residual gravity map of Teels Marsh	21
Figure 6-4	Reduced-to-pole magnetic survey map for Teels Marsh	22
Figure 6-5	Total dissolved solids in groundwater sampled Geoprobe drilling	26
Figure 7-1	Geology of Southern Nevada	29
Figure 7-2	Geologic Map of the Teels Marsh Catchment Basin	30
Figure 7-3	Faults and geothermal systems in the Mina Deflection.	31
Figure 7-4	Geologic structure of Teels Marsh.	32
Figure 7-5	Longitudinal reflection seismic line 4 in Teels Marsh, looking northwest	33
Figure 7-6	Lithium concentrations in shallow auger groundwater sampled by Dajin	34
Figure 7-7	Lithium concentrations in shallow auger sediments sampled by Dajin	35
Figure 9-1	Drilling Access and Recent Surface Sampling at Teels Marsh	44
Figure 9-2	Drill Pad DH-2 Under Construction – looking west	44
Figure 9-3	Drill Pad DH-2 Under Construction – from above	44
Figure 9-4	Constructed Drill Pad and Sump	45
Figure 9-5	Brine pit at Site T-25 Sept, 2020	45
Figure 9-6	Completed brine pit at Site T-25 Sept 2020	46
Figure 12-1	Teels Marsh Looking West to Constructed Drill Pad	52
Figure 12-2	Teels Marsh and Marietta Wild Burro Range	54
Figure 12-3	Drill Pad TM-DH-01	55
Figure 12-4	Site Visit Sample Pit TM21-02 – oblique and plan view	56
Figure 12-5	2021 Site Visit Sample Locations	57

LIST OF TABLES

Table 6-1	2015 Geoprobe Holes: depth, sample depth, selected analyses	25
Table 12-1	Clay Samples Collected from the Property on March 17, 2021	53
Table 12-2	Brine Samples collected from the Property on March 17, 2021	53
Table 12-3	Analytical Results of Site Visit Verification Clay Samples	55
Table 12-4	Analytical Results of Site Visit Verification Brine Samples	56
Table 26-1	Proposed Budget for Teels Marsh Exploration	56
LIST OF APPE	NDICES	
APPENDIX 1:	Details of HeliosX Teels Marsh Placer Claimsat en	۱d
APPENDIX 2:	Assay Certificates for the 2019 QP Samplesat e	nd

		<u> </u>				
Abbreviation	Definition	Abbreviation	Definition			
m	micron	kW	kilowatt			
°C	degrees Celsius	kWh	Kilowatt-hour			
°F	degree Fahrenheit	L	liter			
mg	microgram	L/s	litres per second			
Α	Ampere	LREE	light rare earth elements			
Ag	Silver	LREO	light rare earth oxides			
Au	Gold	m	metre			
а	annum	Μ	mega (million)			
ac	acre	m ²	square metre			
bbl	barrels	m ³	cubic metre			
Btu	British thermal units	Ма	million years			
C\$	Canadian dollars	MASL	metres above sea level			
cal	calorie	min	minute			
cfm	cubic feet per minute	mm	millimetre			
cm	centimetre	μm	micrometre			
cm ²	square centimetre	nm	nanometre			
cps	counts per second	mph	miles per hour			
d	day	MVA	megavolt-amperes			
dia.	diameter	MW	megawatt			
dmt	dry metric tonne	MWh	megawatt-hour			
dwt	dead-weight ton	m³/h	cubic metres per hour			
ft	foot	oz/ton	ounce per short ton			
ft/s	foot per second	toz	Troy ounce (31.1035g)			
ft ²	square foot	oz/dmt	ounce per dry metric			
ft ³	cubic foot	pop.	population			
g G	gram	ppb	part per billion			
	giga (billion)	ppm	part per million			
Gal	Imperial gallon	QA	quality assurance			
g/L	gram per litre	QC	quality control			
g/t	gram per tonne	REE	rare earth elements			
gpm	Imperial gallons per minute	RL	relative elevation			
gr/ft ³	grain per cubic foot	S	second			
gr/m ³	grain per cubic metre	st	short ton			
hr	hour	stpa	short ton per year			
ha	hectare	stpd	short ton per day			
hp	horsepower	T .	metric tonne			
HREE	heavy rare earth elements	Th equiv.	equivalent; gamma counts			
HREO	heavy rare earth oxides	Th equiv.	of Tl ²⁰⁸			
in	inch	TREE	Total rare earth elements			
in ²	square inch	TREE	Total rare earth elements			
J	joule	tpd	metric tonne per day			
k	kilo (thousand)	US\$	United States dollar			
kcal	kilocalorie	USgpm	US gallon per minute			
kg	kilogram	USgpm	US gallon per minute			
km	kilometre	V	volt			
km/h	kilometre per hour	W	watt			
km ²	square kilometre	wmt	wet metric tonne			
kPa	kilopascal	yd ³	cubic yard			
kVA	kilovolt-amperes	yr	year			

NOTICE

This Technical Report has been prepared for HeliosX Lithium & Technologies Corp.("HeliosX") (Formerly Dajin Lithium Corp. ("Dajin")) to comply with National Instrument 43-101 by John Gorham, P. Geol., and Trevor Mills, P.G., SME-RM. The information, conclusions, and recommendations contained herein are consistent with the data and information available at the time of preparation, and the assumptions, conditions, and qualifications set forth in this report. This report is intended for use by HeliosX, and the authors consent to its filing as a Technical Report with Canadian Securities Regulators. Except for the purposes legislated under provincial securities law, any use of this report by any third party is at that party's sole risk.

1 SUMMARY

HeliosX Lithium & Technologies Corp ("HeliosX"), formerly Dajin Lithium Corp. ("Dajin") of Vancouver, BC, has retained Dahrouge Geological Consulting Ltd. ("Dahrouge") of Edmonton, AB, Canada to prepare an Independent Technical Report on the Teels Marsh Property ("the Property") in compliance with regulatory disclosure and reporting requirements as outlined in the Canadian National Instrument 43-101 ("NI 43-101"), companion policy NI 43-101CP and Form 43-101F1. The purpose of this report is to review and summarize the previous exploration on the Property, and to provide recommendations for future work. This report was prepared before the name change from Dajin to HeliosX, effective February 1, 2022, therefore some figure content and title blocks still retain the heading 'Dajin Lithium Corp.'.

1.1 PROPERTY DESCRIPTION

The Teels Marsh Property is located within Mineral County, Nevada, USA approximately 42 km (22 miles) south-southeast of Hawthorne, Nevada (Figure 1-1; Figure 4-1). The geographic center of the Property is about 38° 12' 37" north latitude and 118° 21' 10" west longitude. The northeast part of the Property is accessible by 13 km (8 miles) of gravel road which runs west from Nevada state highway #360 to the historic mining town of Marietta (Figure 4-1).

1.2 MINERAL TENURE

The Teels Marsh Property comprises 403 contiguous unpatented placer claims covering an area of approximately 3,202 ha (7,914 ac) (Figure 4-1; Appendix 1). The property is located approximately 24 km (15 mi) west of US Highway 95, about 100 km (62 mi) west-northwest of Tonopah and about 85 km (53 mi) north of the Albemarle's Silver Peak lithium brine operations at Clayton Valley. Work on the Property has been carried out under Notice of Intent NVN-94695, which was extended on July 27, 2021, for two years. HeliosX also holds NDWR Permit 85204 which allows for the consumptive use of up to 1,000 acre-feet of water annually. Application for extension of this permit for a further three years was filed on June 8, 2021 and granted until May 24, 2024.

1.3 GEOLOGY AND MINERALIZATION

Teels Marsh is located in west-central Nevada, along the western edge of the physiographic Basin and Range Province. It is also within the Mina Deflection; a zone of left-lateral strike-slip faults situated in a broader regional zone of right-lateral, northwest-striking strike-slip faults termed the Walker Lane (Figure 7-3). The Walker Lane occupies a geologic transition zone between the Great Basin to the east and the Sierra Nevada Mountains to the west. The north and west sides of the valley which hosts Teels Marsh are defined by active strike-slip and normal faults of the predominantly leftlateral Excelsior Mountain fault system. The architecture of these faults produced a pull-apart block, causing subsidence, leading to formation of a deep sediment-filled basin beneath Teels Marsh (Coolbaugh and Hickson, 2017).

The Property covers a playa named Teels Marsh consisting of unvegetated mud, silt, and salt. Permanent standing water is found only in the vicinity of springs. Teels Marsh occupies the lowest-

elevation portion of a large, closed (811 km²) catchment basin with high topographic rims. In combination with a dry, desert climate, the closed basin has allowed ground- and surface water to accumulate in the playa, where evaporation has produced residual salty brine enriched in several constituents, potentially including lithium.

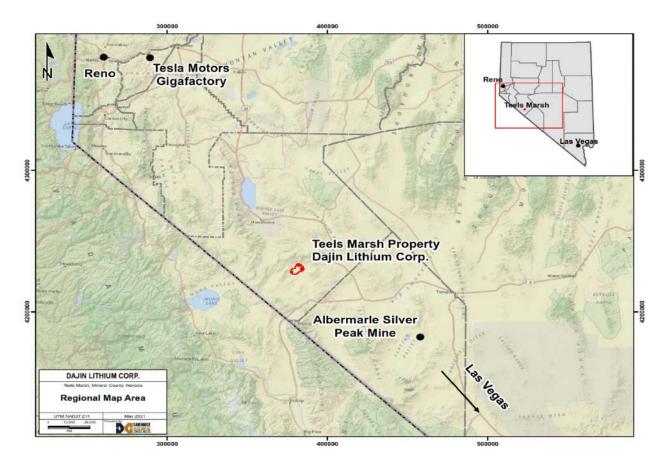


Figure 1-1 Teels Marsh Property Location

Lithium has been measured in concentrations of up to 79 mg/L in near-surface (≤ 3 m) brines in the northwest corner of the marsh but is found in concentrations of ≤ 10 mg/L in shallow brines elsewhere in the playa. Higher concentrations of lithium could occur at depth in the basin given saline brines are relatively dense and tend to sink at the expense of fresher water, and because near-surface brines can experience periodic dilution from incoming flood waters (Coolbaugh and Hickson, 2017). At Clayton Valley, which is the site of Nevada's only operating lithium brine extraction plant situated about 85 km southeast of the Property, economic concentrations of lithium in brines were reportedly not encountered until drilling was initiated (Davis et al., 1986).

Teels Marsh shares several characteristics with other basins that contain lithium brines. These characteristics include: a dry desert climate in a closed basin with high evaporation rates; a bedrock geology that includes felsic volcanic rocks, which are a potential source of lithium which can be

leached by groundwater, and geothermal activity; present on the northwest, southwest, and south sides of the playa with recorded temperatures of up to 97°C at a 40 metre (130 foot) depth (Coolbaugh and Hickson, 2017). Teels Marsh also lies relatively near sources of volcanic tephra (ash) at the Long Valley Caldera and Mono Craters, CA. These features lie approximately 70 km southwest of Teels Marsh. A number of eruptions at the Long Valley Caldera and Mono Craters during the Quaternary Period produced large amounts of volcanic tephra that settled into basins in west-central Nevada. These tephra layers form significant aquifers for lithium brines at Clayton Valley and could form similar aquifers at Teels Marsh. Aquifers at Teels Marsh might also form in clastic layers of silt, sand, or gravel. Such clastic layers are relatively important hosts for lithium brines in immature basins (basins dominated by mechanical sedimentation) as opposed to mature basins, where chemical sedimentation (halite) is more important (Houston et al., 2011). The closed basins of west-central Nevada, including Teels Marsh and Clayton Valley, fall into the immature category.

Exploration work completed by Dajin (now HeliosX) at Teels Marsh from 2014 through 2016 included

- Drilling of 96 auger holes to a typical depth of 2.7 m (9 ft),
- Completion of a detailed gravity survey,
- Computer-modeling of basin sediment thickness based on the gravity data,
- Completion of a 19.5 km (12.1 mile) reflection seismic survey on four intersecting profiles,
- Interpretation of the processed seismic data to produce a structural model of basin development, and
- Drilling of 10 Geoprobe holes up to 61 m (200 ft) deep.

The geophysical surveys were used to build a structural and stratigraphic model of the basin (see section 6.5). In this model, subsidence along sub-parallel normal faults on the northwest side of the basin formed a deep composite half-graben up to 2.5 km (8,200 ft) deep. Sedimentary layers within the graben dip to the northwest.

The Geoprobe holes did not encounter significant lithium concentrations in groundwater. However, because of muddy ground conditions, the Geoprobe was not able to test the more prospective western portion of the playa where lithium concentrations were highest in auger brines (up to 79 mg/L) and auger sediments (up to 740 ppm), nor was it able to test the central portions of the playa. The Geoprobe is also not capable of drilling to the depths necessary to test for the presence of a thick volcanic tephra layer (the Bishop Tuff) deposited during the eruption of the Long Valley caldera 0.76 million years (Ma) ago. This tephra layer (the "main ash aquifer") forms the largest single lithium brine aquifer at Clayton Valley, where it ranges from 1.5 to 9.1 m (5 to 30 ft) thick and occurs at depths ranging from 60 to 230 metres (200 to 750 feet) (Zampirro, 2004).

In 2018, Dajin (now HeliosX) constructed access, pads, and sumps in anticipation of a drill program with large-diameter holes which could be converted into production wells (See section 9).

1.4 DEVELOPMENT AND OPERATIONS

Minor silver and lead production north of the property was undertaken in the late 1800's from breccias north of Marietta. Borax was mined from Teels Marsh by US Borax Inc. (now part of Rio Tinto Group) which still holds patented claims in the eastern part of the Property (Figure 4-2) between 1873 and 1892, amounting to over 8,000 tonnes (Papke, 1976).

Groundwater exploration in the 1960's and 1970s, and geothermal exploration between 2005 and 2008 have overlapped the Property (see section 6).

1.5 CONCLUSIONS AND RECOMMENDATIONS

The Teels Marsh Property is considered by the authors to be a property of merit. Only shallow drilling (<60 m), around the outer edges of the Marsh, has been attempted thus far, but basin modelling from gravity and seismic surveys indicates a deep (up to 2,500 m or 8,200 ft) half-graben providing a significant volume within which lithium brines could collect.

Factors supporting the potential for lithium brines include:

- Deep sediment-filled basin (up to 2.5 km (8,200 ft) based on seismic interpretation),
- Potential lithium source rocks in the Candelaria Hills tuff sequence, and Bishop Tuff,
- Volcanic eruptive centres at the Long Valley and Mono craters southwest of Teels Marsh which may have deposited tephra layers similar to those found as aquifers at Clayton Valley about 85 km (53 mi) to the southeast,
- Significant evidence of geothermal activity including thermal springs and travertine to the south, and test wells showing shallow hot water to the northwest and southwest of the property (up to 97° C at 40 m (130 ft) depth),
- Borate deposits mined historically in the eastern part of the playa, and
- Desert climate with similar temperature conditions and evaporative rates to Clayton Valley which has hosted production from lithium brines since 1966.

It must be stated that, at this point, there is no certainty that lithium is present in economic concentrations beneath Teels Marsh, or that it can be extracted economically. The authors are of the opinion that, given the generally similar geological conditions and proximity of Teels Marsh and Clayton Valley, as well as favourable basin geometry and potential source rocks, that exploration for lithium brines at Teels Marsh is warranted. Holding water rights for the Teels Marsh Property

provides HeliosX a clear path for the exploration and ultimate the development of lithium brines, if identified in economic concentrations at Teels Marsh.

The authors recommend deeper drilling to target possible lithium brines at depth at Teels Marsh. A two-phase program is recommended to test two targets:

- Western sub-basin where lithium concentrations in shallow brines are highest.
- The more centrally located sub-basin where the accumulated sediments are thickest.

Phase 1 would consist initially of two large diameter (7") drill holes, one at each pad drilled to about 150 m (500 ft) (Locations TM-DH-1S and -2 S: Figure 9-1). These holes would test the upper units of the playa. Once those were tested, a second deeper well (Locations TM-DH-1D and-2D) of up to 1,000 m (3,300 ft) at each pad can be drilled, as the conditions in the upper 150 m (500 ft), which historically are more difficult to drill, would be better known. This drilling of up to 2,300 m (7,550 ft) would test for the possible occurrence of the Bishop Tuff, which is likely to occur at greater depths in the deeper central sub-basin than in the shallower western sub-basin.

Phase 2 would be contingent upon the successful conclusion of Phase 1 with favourable drilling results and would consist of an additional two holes on each of the two existing pads with graduated depths of 1,500 m to 2,000 m each for a total metrage of up to a further 7,000 m (23,000 ft) if results justify (Figure 9-1).

2 INTRODUCTION

Dahrouge Geological Consulting Ltd. Of Edmonton, AB, Canada ("Dahrouge") has been retained by HeliosX Lithium & Technologies Corp. (formerly Dajin Lithium Corp.) of Vancouver BC ("HeliosX") to prepare an independent Technical Report on the Teels Marsh Property ("the Property").

The Teels Marsh Property comprises 403 contiguous unpatented placer claims covering an area of approximately 3,202 ha (7,914 ac) (Figure 4-1; Appendix 1). The property is located approximately 24 km west of US Highway 95, about 100 km west-northwest of Tonopah.

This report was commissioned by HeliosX (formerly Dajin) to comply with regulatory disclosure and reporting requirements outlined in the Canadian National Instrument 43-101 ("NI 43-101"), companion policy NI 43-101CP, and Form 43-101F1. The Qualified Persons responsible for this report are John Gorham, P. Geol., and Trevor Mills, P.G., SME-RM. Mr. Mills visited the Property on March 16 to 18, 2021, and is responsible for Sections 12, 25 and 26 in this report. Mr. Mills sampled near-surface brines and sediments during his site visit and reviewed constructed drill access (Section 12). Mr. Gorham did not visit the Property. He is responsible for Sections 1 through 11 and 13 through 27of this report. The purpose of this report is to review historical exploration and the results of Dajin's 2014 through 2016 exploration of the Property, and to update subsequent construction and surface sampling conducted in 2018 and 2020.

All information, conclusions and recommendations contained within this report are based on field observations as well as published information. Field work by Dajin in 2014 through 2016 is extensively detailed by Coolbaugh and Hickson, (2017). Published literature on Teels Marsh and surrounding areas upon which the authors relied is detailed in Section 27(References).

3 RELIANCE ON OTHER EXPERTS

This report has been prepared by Trevor Mills, P.G., SME-RM, and John Gorham, P. Geol. of Dahrouge Geological Consulting USA., and Dahrouge Geological Consulting Ltd. respectively. The information, conclusions, opinions, and estimates contained herein are based on field observation as well as published information.

The authors have reviewed, and extensively relied upon, the Technical Report on the Teels Marsh Property, Mineral County, Nevada, USA, by M.F. Coolbaugh and C.J. Hickson (2017) for details of exploration conducted by Dajin on the Property.

Property claim-status information, including that of adjacent properties was verified by Sandi Sullivan, Carlin Trend Mining Supplies and Service, Elko, Nevada. The authors have not reviewed any formal documentation to further confirm the ownership of the claims listed in Appendix 1.

Permitting status and reclamation bonding were confirmed with Catherine Lee and Kaitlin Sweet of EM Strategies Inc., Reno, Nevada.

Details of water rights were confirmed by Chris Mahannah, P.E., of Mahannah & Associates LLC, Reno, Nevada

The authors have no reason to believe that the information used in the preparation of this report is false or purposefully misleading and have relied on the accuracy and integrity of the data referenced in Section 27 of this report.

While the title documents discussed above were reviewed for this report, this report does not constitute, nor is it intended to represent, a legal, or any other opinion as to title. Except for the purposes legislated under provincial securities laws, any use of this report by any third party is at that party's sole risk.

The information, conclusions, and recommendations contained in this report are consistent with the data and information available at the time of preparation, and the assumptions, conditions, and qualifications set forth in this report. Except for the purposes legislated under provincial securities law, any use of this report by any third party is at that party's sole risk.

As of the date of this report, the authors are not aware of any material fact or material change with respect to the subject matter of this report, in its entirety, that is not presented herein, or which the omission to disclose could make this report misleading.

4 PROPERTY DESCRIPTION AND LOCATION

4.1 LOCATION

The Teels Marsh property is in south-central Mineral County, Nevada approximately 42 km southeast of Hawthorne, NV, and 195 km southeast of Reno, NV (Figure 4-1). The northeast end of the property is accessed by a 13-km-long section of graded dirt road that heads westerly from paved state highway 360.

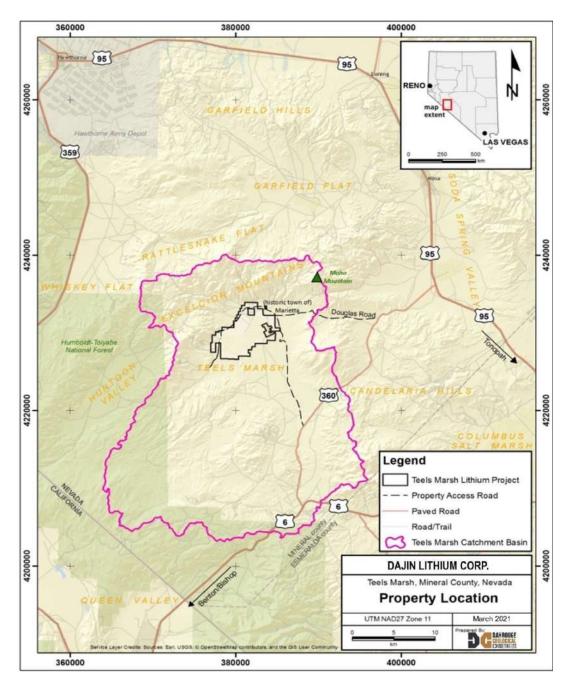


Figure 4-1 Location of the Teels Marsh Property

4.2 MINERAL TENURE

The Teels Marsh Property comprises of 403 contiguous unpatented placer claims, as of 10th March 2021, covering an area of approximately 3,202 ha (7,914 ac) (Figure 4-2). The claims cover all or portions of sections 1, 11, 12, 13, 14, 15, 22, 23, and 24 in Township 4 North, Range 32 East; sections 4, 5, 6, 7, 8, 9, 16, 17, 18, and 19 in Township 4 North, Range 33 East; and sections 31 and 32 in Township 5 North, Range 33 East; all of which lie within the Mount Diablo Meridian in Mineral County, Nevada. Nevada Mining Claim (NMC) numbers, filing dates, and other data for the claims are listed in Appendix 1. Placer claims require an annual of USD 165 per claim.

The claims were registered by Dajin Lithium Corp. On January 13, 2022, Dajin Lithium Corp. and HeliosX Technologies Corp. completed an amalgamation involving Dajin, HeliosX, ESG Technologies Inc. and Helios Infrastructure Corp. The details of this amalgamation were provided in a joint news release (Dajin-HeliosX, 2022a). The amalgamated company was named HeliosX Technologies Corp. On January 28, HeliosX Technologies Corp. (formerly Dajin Lithium Corp.) announced a name change to HeliosX Lithium & Technologies Corp., effective February 1, 2022 (Dajin-HeliosX, 2022b). This Technical report was prepared at the request of Dajin Lithium Corp. prior to the amalgamation and name change described above, so title verification, was confirmed under the name of Dajin Lithium Corp.

HeliosX Lithium & Technologies Corp., through its former entity Dajin Lithium Corp. is currently the sole registered owner of all 403 placer claims, with no underlying ownership, rights, or royalties. The authors have verified that the claims have active status with the U.S. Bureau of Land Management (BLM) and some claim post locations were verified during the site visit (see section 12).

The locations of HeliosX's claims are shown in Figure 4-2. The claims cover the entire surface area of the playa where surface salt minerals are found, except for a small group of patented mining claims in the southeast corner of the playa controlled by U.S. Borax Inc. Additional unpatented placer claims have been staked by other parties adjacent to HeliosX's claims, outside the margins of the playa and inferred deep sedimentary basin (see section 15).

There are no underlying royalty or lease agreements on the property (other than a gravel pit lease for road construction). Requirements for maintaining the claims in good standing include timely filing of initial location certificates with the BLM and county and payment of recording fees; payment of an annual maintenance fee to the BLM of USD \$165/claim by September 1st of each year (all placer claims are 20 acres or less in size), and the filing of an annual "notice of intent to hold" and payment of USD \$15.00/claim to Mineral County by November 1st of each year. All of these actions and payments have been completed by Dajin (now HeliosX) to date.

HeliosX has entered into a mutual non-disclosure and limited data sharing agreement and a field access agreement with U.S. Borax Inc. Dajin (now HeliosX) entered into a joint venture agreement with Geothermal Development Associates regarding overlapping geothermal leases in 2018, and subsequently acquitted the geothermal lease lying within the Property boundaries (Figure 4-2). No other agreements are in place, and there are no underlying royalties to the ground currently controlled by HeliosX in Teels Marsh

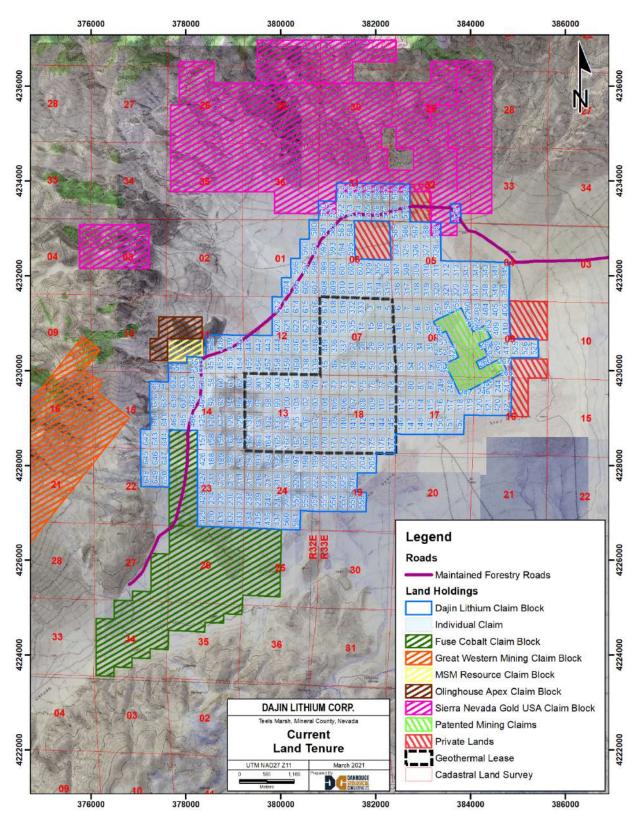


Figure 4-2Map of Teels Marsh Property Tenures

4.3 ENVIRONMENTAL LIABILITIES

Approximately 2.0 hectares (5 acres) of ground disturbance from a seismic survey completed in 2016 are bonded with the BLM through a Notice of Intent (NVN-094095). Reclamation of that survey is considered complete, and a full release of obligations with respect to reclamation is part of an amendment to the existing Notice (dated March 12, 2019). The amendment covers the additional acreage and disturbance required access for a proposed deep drilling program which was constructed in 2018 (see section 9.1 page 42). The impacted area for the drill pads and roads is slightly less than 2.0 hectares (5 acres) and required an additional bond payment with the BLM which has been made. On April 2, 2019, the Nevada State Office of the BLM reduced the bond amount for estimated reclamation to \$176,719 (USD). Extension of the Notice was granted on July 27, 2021, for a further 2 years (to July 27, 2023). The revised reclamation cost estimate (RCE) has been increased to \$209,801. The authors are not aware of any other existing environmental liabilities.

The project site is not within any sage grouse habitat management areas. Teels Marsh is part of the Marietta Wild Burro Range, which is home to approximately 100 wild burros descended from stock originally brought into Teels Marsh in the late 1800s and early 1900s to assist with mining operations. Burro management has not been an issue in the Notices approved by the BLM for Dajin (now HeliosX) in the past (Coolbaugh and Hickson, 2017).

4.4 **REQUIRED PERMITS**

Teels Marsh lies on public lands administered by the BLM under the jurisdiction of the Carson City District office located in Carson City, NV. The exploratory work completed to date has been performed under Notices of Intent (NOI) filed with the BLM. The first Notice covered Geoprobe drilling, and almost all the surface disturbance occurred on the playa. Because of a lack of vegetation, a formal revegetation program was not required, and it was possible to complete reclamation and close the Notice. A new Notice was submitted for a seismic survey in the first half of 2016, and disturbance associated with that survey has been reclaimed. An amended Notice was submitted to the BLM for drilling of exploration wells, and that Notice was approved in a letter issued by the BLM on March 21, 2017 (reference NVN-94695 3809 (NVC0100)). A further amendment was submitted March 12, 2019. An application for renewal for a further two years was approved by the BLM on July 27, 2021.

4.4.1 Water Rights

The drilling of lithium exploration wells also requires approval from the Nevada Department of Water Resources (NDWR). In anticipation of the need for water rights if economic quantities of lithium brines are discovered, HeliosX (formerlyDajin) has applied for, and received, a permit for the appropriation of water (NDWR permit number 85204, granted December 5, 2016). The permit was granted an extension on August 16, 2019, for filing of proof of completion and beneficial use until May 24, 2021.

Temporary change applications were filed on June 8, 2021, for a further three years, and approved July 22, 2021, with an expiry date of May 24, 2024. Permit 85204 allows for the consumptive use of up to 1,000 acre-feet of water annually, which represents approximately 71% of the estimated perennial yield for the Teels Marsh catchment basin (Van Denburgh and Glancy, 1970). This quantity of water is not sufficient to cover the needs of an evaporative pond processing facility the size of the Silver Peak Lithium mine, but it may be sufficient for alternative lithium extraction technologies that do not require solar pre-concentration. Temporary permits 88541T through 88545T for underground water withdrawal were approved under permit 85204, on April 15, 2019, for purposes of construction and drilling. Further temporary extraction permits may be required as exploration proceeds.

4.4.2 Exploration Permit

Current exploration plans include access construction (completed) and use of existing water well as well as drilling of up to 4 exploration wells. The amended Notice of Intent (NVN-094695) dated March 12, 2019, details two proposed wells on Claims LP-96 and LP-338 with estimated depths of 610 m (2,000 ft) and 150 m (500 ft) respectively (Figure 26-1). The reclamation cost estimate for this program was \$176,719 (USD). It has been reviewed as part of the application for renewal of the Notice granted July 27, 2021 and has been revised to \$209,801.

4.5 GEOTHERMAL LEASES

Geothermal leases cover much of the central and western portions of the playa, overlapping the placer claims of Dajin (now HeliosX) (Figure 4-2). These leases were acquired by Geothermal Development Associates of Reno, Nevada (GDA). Dajin entered into a joint venture agreement with GDA in 2018 and subsequently acquired the lease NVN92687 which lies wholly within the Property (Figure 4-2). This lease is in good standing and renewable annually on October 1st. The former lease covering the area west of the Property has been dropped. The development of geothermal resources and production of geothermal energy, if it occurs at Teels Marsh, could be beneficial for lithium extraction, providing a local source of electricity and thermal energy.

4.6 OTHER SIGNIFICANT FACTORS AND RISKS

The authors are not aware of any significant factors or risks associated with the Property.

5 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE, AND PHYSIOGRAPHY

5.1 ACCESS, INFRASTRUCTURE AND LOCAL RESOURCES

Teels Marsh lies 93 km (57 mi) by paved highway and gravel road from Hawthorne, Nevada. From Hawthorne, east and south on paved highway U.S. Route 95 for 68 km (42 mi), then 8 km (5 mi) southwest on paved Nevada State Route 360, then finally 17 km (10 mi) westward on a good gravel road to Marietta (Figure 4-1). Hawthorne can be reached from Reno, Nevada by following portions of Interstate 80 and U.S. Route 95 for a total distance of 216 km (134 mi). Teels Marsh can also be accessed from Bishop, California via U.S. Route 6, and Nevada State Route 360 (116 km (72 mi)), and from Tonopah, Nevada via U.S. Route 95, and Nevada State Route 360 (123 km (77 mi)).

There are no facilities or public utilities at Teels Marsh. The former mining town of Marietta located at the northern margin of the playa currently has one semi-permanent resident. The nearest trailer park is in Mina 38 km (24 mi) from Teels Marsh along the route to Hawthorne (Figure 4-1), but there are no other public services available. Limited food, lodging, and gasoline services are available at Benton and Benton Hot Springs, California; 64 km (40 mi) to the southwest, but more complete services are available in Hawthorne. Hawthorne is the county seat of Mineral County, Nevada and was listed as having 3,269 residents in the 2010 census (results of the 2020 census not yet complete). Hawthorne is also home to the Hawthorne Army (munitions) Depot.

Transportation of products and services to Teels Marsh is made possible by a network of state and interstate paved highways that connect with Reno, Las Vegas, and beyond. That road network traverses the southern portion of the Teels Marsh catchment basin and comes within 16 km (10 mi) of Marietta (Figure 4-1). Access to the highway network from Marietta is provided by Douglas Road, a 16 km segment of maintained graded dirt road that heads eastward, or by another dirt road that heads south. Rail haulage services could potentially be available in Hawthorne, which is the southern terminus of a railroad that has historically been used by the U.S. Army to transport military munitions and supplies.

The nearest source of power is a Nevada Energy transmission line that runs approximately parallel to U.S. Route 95 east of Teels Marsh. Its closest approach to Teels Marsh is about 28 km (17 mi) to the east near Rhodes Marsh. Solar power is being widely developed throughout Nevada and may be an economical alternative to running a spur transmission line to Teels Marsh for future processing and development needs. Recently, Rio Tinto announced plans to investigate concentrated solar power options for their mining operation at Boron, CA (Ker, 2021). Geothermal potential discussed in Section 6.4 may also provide a lower cost alternative.

5.2 TOPOGRAPHY, ELEVATION, AND VEGETATION

Teels Marsh lies in the southwestern portion of the Great Basin Desert and the climate is typically dry. The playa is situated at an elevation of 1,497 m (4,910 ft) and occupies the lowest portion of an 812 km² (313 mi²) catchment basin. Mountains and ridges along the catchment divide reach a maximum elevation of 2,684 m (8,805 ft) at Moho Mountain northeast of Marietta (Figure 4-1).

Higher elevations are characterized by pinyon pines and juniper trees, whereas at lower elevations sagebrush, salt brush, salt grass, and other desert grasses and shrubs dominate. The playa surface at Teels Marsh is barren of vegetation and is dry most of the year, but the ground is moist at depths ranging from 0 to 10 cm, and the groundwater table usually lies within 1-3 m of the surface. Water temporarily covers portions of the playa after flash floods from thunderstorms.

5.3 CLIMATE

Precipitation records are not available, but the climate is similar to that at Mina, Nevada, 30 km to the northeast, where average annual precipitation is 11.5 cm (4.52 in), while at Hawthorne, 40 km to the north it is slightly more, at 11.5 cm (4.54 in) (from Western Regional Climate Center data, <u>https://wrcc.dri.edu</u>). The highest monthly average maximum temperature in Mina is 35.3°C (95.6°F) in July, and the lowest monthly average minimum temperature is -6.3°C (20.7°F).

6 HISTORY

Minor silver, lead, gold, uranium, and tungsten mineralization was discovered in the hills immediately surrounding Teels Marsh in the 1860's. Minor production of silver and lead, perhaps in the range of one million dollars (USD) in total value, came from base-metal-silver veins and breccias north of Marietta. Minor uranium-bearing fractures in granite and volcanic rocks west of Teels Marsh were prospected in the 1950s, and some tungsten mineralization is also reported from that area (Coolbaugh and Hickson, 2017). All of this mineralization lies outside the immediate confines of Teels Marsh and outside the HeliosX tenures.

6.1 BORATE AND SALT MINING

Teels Marsh was the first location where natural borax was discovered in Nevada, in 1872. The area was mined between 1873 and 1892 by US Borax Inc. (now part of Rio Tinto Group) (Papke, 1976) and became the second-largest historic borate producer in the state of Nevada after the Muddy Mountains, east of Las Vegas, in Clark County. Total production more than 8,000 tonnes (~9,000 tons) was recorded (Papke, 1976). For a few years, Teels Marsh led the world in borate production, though those early production rates are now overshadowed by mining of larger deposits in California, Turkey, South America, and central Asia (Brioche, 2021).

The borate minerals occur as surface layers of borax and tincalconite, with the richest deposits localized near the eastern end of the playa (Figure 6-1). The borax and tincalconite formed from the evaporation of boron-rich groundwater as it rose to the surface in the dry, hot desert environment of the playa. Since borax mining ceased over 100 years ago, borax and tincalconite crusts have reformed at some locations, where they have been detected by field spectroscopic and remote sensing surveys (Coolbaugh and Hickson, 2017). Most of the borax and tincalconite-bearing areas are covered by patented mining claims not under the control of HeliosX (see section 4.2, Figure 4-2).

Small amounts of sodium chloride were also mined at Teels Marsh beginning in 1867 to supply mills in the Aurora silver district located 45 km to the west. The specific location of this salt production in the playa is not known (Coolbaugh and Hickson, 2017).

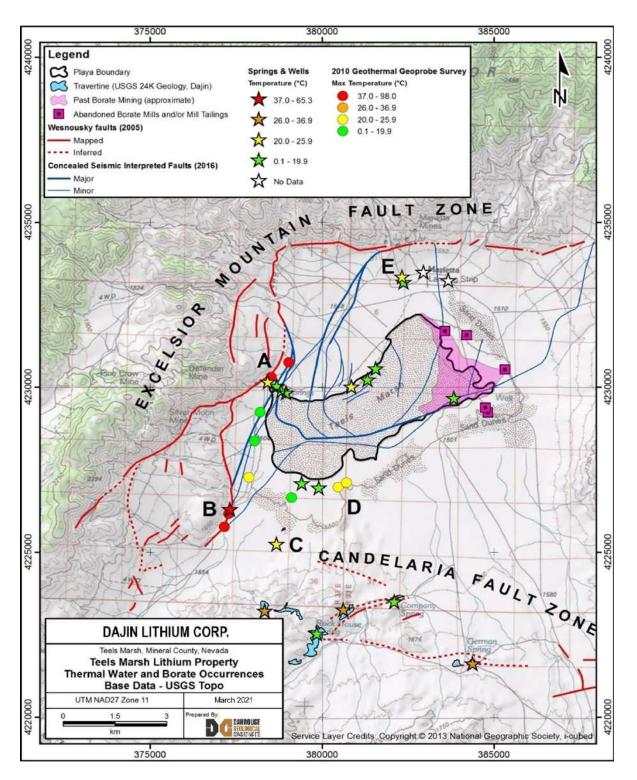


Figure 6-1 Historical Geothermal Exploration, springs, borate, and travertine occurrences in the Teels Marsh Area.

6.2 GROUNDWATER EXPLORATION AND RESEARCH ACTIVITIES

In the 1960s and 1970s, several research groups investigated shallow groundwater and sediment compositions of Teels Marsh basin. The USGS, in cooperation with the Nevada Division of Water Resources appraised the suitability of groundwater for possible domestic, agricultural, or other public use (Van Denburgh and Glancy, 1970). This appraisal included drilling 11 wells around the margins of Teels Marsh to depths of 129 to 212 m (423 to 695 ft); five of these wells appear to lie within the HeliosX claim block (Figure 6-2). Geologic logs and partial water geochemical analyses are available, but no lithium values are mentioned.

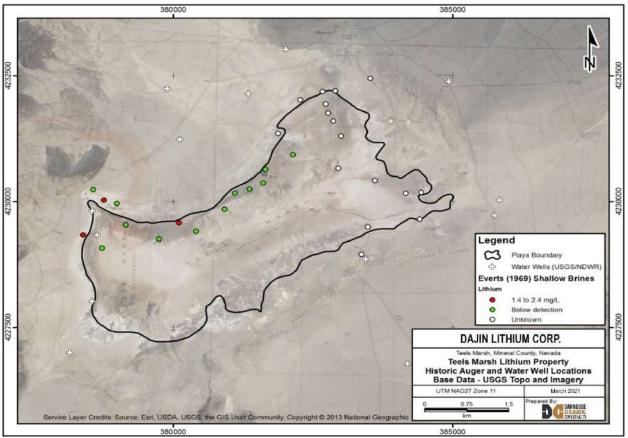


Figure 6-2 Location of water wells and auger holes.

From Everts (1969) and Van Denburgh and Glancy (1970)

Coolbaugh and Hickson, 2017 note several historical studies investigating the composition of shallow brines and sediments in Teels Marsh. These are documented in several theses referenced below. The University of California and USGS drilled several shallow auger holes (3.0-6.1 m deep (10-20 ft)) and dug 1-2-metre-deep pits to study zeolite alteration processes in tephra layers, but the specific locations are unknown (Hay, 1964). In the summer of 1967, 28 auger holes up to 11.6 m (38 ft) deep were drilled as part of a thesis addressing the evolution of brines in Teels Marsh (Everts, 1969). These holes are distributed along the northwestern and northeastern margins of the marsh and most lie within the HeliosX property (Figure 6-2). Samples from the Everts drilling program were studied further by Drew (1970) to characterize oxidation-reduction processes. In 1974, Smith, as part of a

Ph.D. thesis, sampled shallow (up to 3.5 metre-depth) playa sediments and interstitial brines to assess chemical controls on weathering (Smith, 1974). Smith also analyzed springs around the margins of the marsh to evaluate the nature and sources of shallow groundwater (Smith, 1974; Smith and Drever, 1976). In 1977, additional samples from shallow pits, many of which lie on the Property, were taken to continue zeolitic alteration studies (Taylor and Surdam, 1981). These studies have been helpful for documenting the occurrence of multiple shallow tephra layers in the marsh, characterizing shallow brine compositions and groundwater flow, and documenting on-going alteration processes in shallow sediments, particularly the tephra layers (Coolbaugh and Hickson, 2017).

6.3 LITHIUM EXPLORATION

Of the above studies, only that of Everts (1969) is known to have analyzed samples for lithium content. Water samples from 15 of 28 auger holes drilled by Everts (typically taken from a 2.4 m (8 ft) depth) were analyzed for lithium using atomic absorption by Foote Mineral Company of Silver Peak, NV. Lithium concentrations ranged from "trace" to 2.4 ppm (2.4 mg/L), with higher values concentrated in the northwestern margin of the playa (Figure 6-2).

The USGS conducted limited lithium exploration in Teels Marsh as part of a national lithium resource assessment in the 1970s that involved sampling and assessment of a variety of geological environments (Vine, 1976; Bohannon and Meier, 1976). In Teels Marsh, the USGS analyzed 127 surface- and near-surface sediments for lithium, yielding concentrations ranging from 13 to 850 ppm Li, averaging 146 Li. Lithium concentrations were found to be somewhat higher near springs marginal to the playa, where concentrations ranged from 24 to 850 ppm, averaging 223 ppm Li (Bohannon and Meier, 1976). The 500 sediment analyses published by Bohannon and Meier (1976) came from 58 basins or valleys located throughout Nevada, and Teels Marsh had the fourth highest average lithium concentration and the highest single assay (850 ppm, excluding samples taken from bedrock mineralization in the Muddy Mountains of southern Nevada). The analytical method used by the USGS was hydrofluoric acid dissolution followed by atomic absorption. Unfortunately, Bohannon and Meier did not provide maps or coordinates for their samples in their publication; consequently, the locations of samples with respect to the Property are unknown, but it is considered likely that the most of samples came from within the property boundary, since the property covers the majority of the surface area of the marsh, including areas near springs (Coolbaugh and Hickson, 2017).

As part of a geothermal exploration program, the Great Basin Center for Geothermal Energy (GBCGE) analyzed one playa groundwater sample for lithium from a 1-2 m depth, obtaining 1.35 mg/L (Coolbaugh et al., 2006). This sample came from the area of past borate mining on the eastern margin of the playa, just outside the Property.

Nevada Energy Metals had a lithium property position southwest of HeliosX's claims in Teels Marsh and had completed a limited amount of exploration work in 2016. This property was dropped and restaked by Fuse Cobalt Inc. of Vancouver, BC. This work included drilling of 27 auger holes to depths of up to 3 m, from which sediments were taken that yielded lithium concentrations ranging from 8.9

to 104.5 ppm. These holes are located outside the playa in areas covered in part by sand and gravel. For this reason, and because HeliosX has taken its own auger samples from the Property on the playa, the Nevada Energy Metals results are not considered to have a significant bearing on the lithium potential of the HeliosX property (Coolbaugh and Hickson, 2017).

It is understood that other lithium exploration companies have explored Teels Marsh over the last several decades, but as far as the authors are aware, all this exploration was surficial, potentially involving water and sediment samples taken from within a few metres of the surface. No evidence of drilling in the playa beyond shallow auger depths has been obtained from any source.

More recently, HeliosX (formerly Dajin) began exploration work at Teels Marsh in late 2014. The HeliosX work includes auger sampling, Geoprobe drilling, gravity, and seismic surveys, and is described in detail in section 6.5 below.

6.4 GEOTHERMAL EXPLORATION

Geothermal exploration work from 2005-2008 conducted by the Great Basin Center for Geothermal Energy (GBCGE) at the University of Nevada, Reno (UNR), led to the discovery of shallow thermal groundwater surrounding the northwestern and southwestern margins of the Teels Marsh playa (sites "A" through "D", Figure 6-1). No thermal springs or wells were known to exist in Teels Marsh basin, but the presence of geothermal activity was suspected based on a recognized link in Nevada between young borates and geothermal activity (Coolbaugh et al., 2006). The geothermal exploration work consisted of geochemical sampling of springs and wells to calculate geothermometer temperatures (Coolbaugh et al., 2006), spectral surveys of surface borate occurrences (Kratt et al., 2006), 2-metre temperature surveys (Kratt et al., 2008), and Geoprobe drilling in 2010 (Zehner et al., 2012). The Geoprobe drilling encountered temperatures of up to 97°C at 40 m (130 ft) depth northwest of the marsh (site "A", Figure 6-1), and 78°C at 30 m (98 ft) depth southwest of the marsh (site "B", Figure 6-1).

The geothermal occurrences generally lie outside the HeliosX property boundary, though some overlap occurs in the vicinity of point "A" on Figure 6-1. Geothermal rights, as discussed in section 4.5, are covered by a separate geothermal lease owned by HeliosX as of the effective date of this report.

6.5 DAJIN PREVIOUS EXPLORATION

Dajin (now HeliosX) initially staked claims at Teels Marsh of 2014. From 2014 to 2016 the following surface and near-surface exploration activities have been completed on the property by (HeliosX):

- Auger geochemical sampling to depths of 1-3 m across the playa, (148 sediment samples and 73 groundwater samples.
- Detailed gravity measurements of the playa basin and surrounding areas, (415 stations).
- Custom processing of a regional magnetic survey.

- Detailed modelling of the gravity data to predict the thickness of unconsolidated sediments in the basin and provide constraints on the location of faults.
- Creation of a preliminary structural model based on the gravity modelling and known fault patterns.
- Reflection seismic surveying, comprising 4 lines with a total length of 19.5 km, and
- Interpretation of the seismic survey to create a revised basin-depth and structural model.
- Geoprobe drilling of 10 holes to maximum depths of 61 metres (200 ft); see section 10.

Details of this exploration work are presented in Coolbaugh and Hickson (2017) and summarized here.

6.5.1 Auger Geochemical Sampling

Two campaigns of auger sampling of shallow sediments and groundwater were conducted in late 2014, early 2015 (76 holes: 148 sediment samples and 73 brine samples), and 2016 (20 holes focused in the northwest corner of Property, where best results of first campaign were found).

Lithium concentrations in auger sediments increase progressively from northeast to northwest in the play (Figure 7-7), and lithium concentrations in auger groundwater are highest in the extreme northwest corner of the playa, ranging up to 79 mg/L (Figure 7-6). The source of elevated lithium concentrations in the northwest is believed to be geothermal fluids, because thermal groundwaters with temperatures of up to 97°C are present at shallow depths near the northwest corner of the playa, and because solute ratios of the geothermal waters match the ratios observed in the playa brines (Coolbaugh and Hickson, 2017).

6.5.2 Gravity and Magnetic Survey

A detailed gravity survey was completed in the spring of 2015 to estimate the thickness and distribution of basin-fill sediments at Teels Marsh (Magee Geophysical Services LLC, 2015). Gravity was measured at 415 new stations, most of which (307 stations) followed a grid spacing of 250 x 500 metres, with the remaining 108 stations acquired along roads to provide a more regional context (Figure 6-3). A LaCoste & Romberg Model-G gravimeter was used, and topographic control was provided by a Trimble Real-Time Kinematic (RTK) and Fast-Static GPS.

The gravity data were processed by Wright Geophysics in March 2015. The 415 new gravity stations were merged with 96 public domain USGS stations and processed to Complete Bouguer Anomaly (CBA). The first vertical derivative of the CBA, a smoothed regional CBA map, and a residual gravity map were produced by subtraction of the smoothed regional grid from the CBA (Figure 6-3, Wright, 2015).

History

An airborne magnetic survey previously flown for the US Geological Survey in 2000 and 2001 by Fugro Airborne Surveys (Schacht, 2001) was also digitally processed by Wright (2015). The data provided useful information on the subsurface distribution of magnetized rocks, especially in the central portion of the basin. The most notable feature identified on the magnetic field maps is a north-south-trending zone of higher field strength in the west-central portion of the basin (Figure 6-4). This feature is interpreted to indicate the possible presence of mafic volcanic rocks in the subsurface, either as flows lying on basement rocks, flows intercalated with sediments, or mafic volcanic rich sediment layers in the deeper portions of the basin (Coolbaugh and Hickson, 2017).

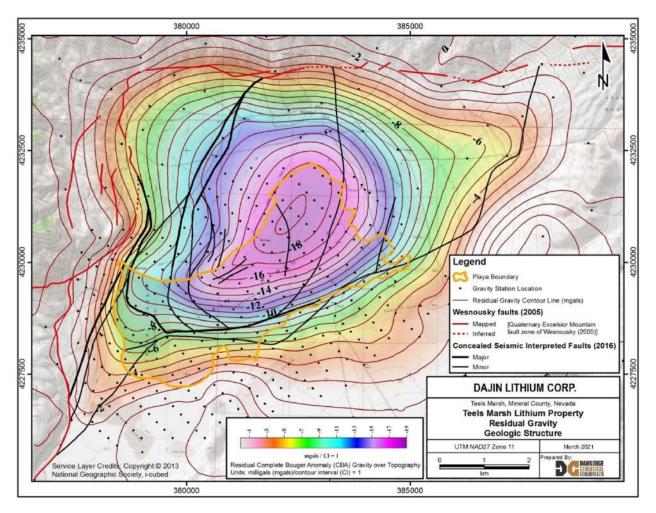


Figure 6-3 Residual gravity map of Teels Marsh.

From Wright (2015)

6.5.3 Basin Modelling

A 3D basin model of the thickness of unconsolidated sediments was constructed by Wright (2015) using the detailed gravity data. Products of the modelling include digital maps of basin fill thickness,

elevation of the top of consolidated bedrock (Figure 7-4), and the horizontal gradient of basin fill thickness (Wright, 2015).

The detailed gravity model predicts the presence of a deep bedrock basin beneath Teels Marsh with approximate dimensions of 6.5 km in a NE-SW direction, 1 to 2.4 km in a NW-SE direction, and a maximum modelled depth of 2.5 km (Figure 7-4). For its size in map-view, Teels Marsh basin is remarkably deep, creating a larger target volume than is readily apparent from the size of the playa itself.

A preliminary structural model of Teels Marsh was constructed for Dajin (now HeliosX) by Coolbaugh (2016), with the objectives of estimating the location and size of fault blocks, assessing potential sources and sinks for lithium, better understand the tectonic processes responsible for formation of the basin, and insight into the depth and character of possible aquifers.

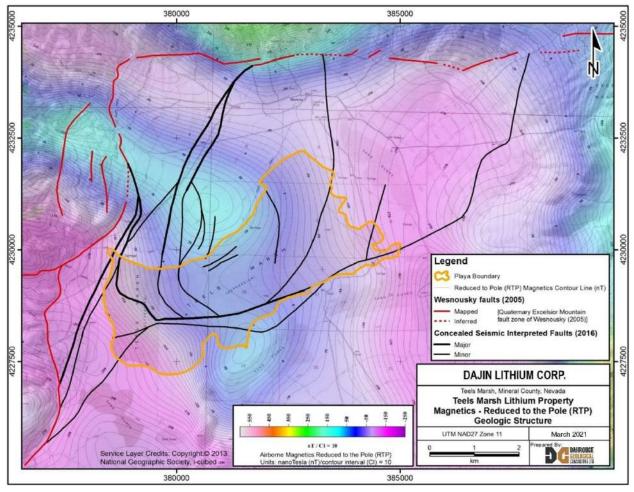


Figure 6-4 Reduced-to-pole magnetic survey map for Teels Marsh.

From Wright (2015)

The relatively deep, narrow character of the bedrock basin imaged by the gravity modelling was used to infer the presence of a northeast-striking graben fault system. Irregularities in the strength of the gravity field were used to infer the presence of cross-faults and fault intersections, which have the potential effect of dividing the basin into several fault blocks (Coolbaugh, 2016). This structural model was updated after completion and interpretation of a seismic survey (Coolbaugh and Faulds, 2016).

6.5.4 Reflection Seismic Survey

A reflection seismic survey totaling 19.5 km (12.1 mi) in length was completed by Eagle Exploration Inc. in May and June of 2016. The survey consisted of three NW-SE lines that cross the inferred graben at nearly right angles, and one NE-trending longitudinal line that follows the long axis of the graben (Figure 7-3).

A structural interpretation of the four seismic sections was completed in October 2016 (Coolbaugh and Faulds, 2016). Interpretation of the seismic profiles reveals that the deep basin beneath Teels Marsh is a composite half-graben, with the dominant bounding normal faults located on the northwest side of the graben (Figure 7-3; Figure 7-4; Figure 7-5). This composite graben consists of a centrally located half-graben nested within a larger half-graben whose primary fault boundaries are defined by the range-bounding Excelsior Mountain Fault on the west and north margins of the Teels Marsh valley (Figure 7-4). Sediments within the interior portion of the half-graben dip northwesterly to westerly, in response to listric-normal motion along the dominant north to northeast-striking, southeasterly dipping faults. Several minor antithetic and synthetic faults inferred from the seismic data may subdivide the basin into smaller fault blocks (Figure 7-4; Figure 7-5). Although total displacement along these subsidiary faults is likely to be minor, it could be sufficient to form barriers to fluid flow along individual sedimentary aquifers, or to provide local zones of communication from one fault block to another.

Several reflective horizons are visible in the seismic profiles in the unconsolidated sediments. No drilling is available with which to identify the geologic composition of the reflectors, but the reflector patterns resemble those in nearby Clayton Valley, where drill-hole geologic logs have been matched to seismic sections (Spanjers, 2015). Similar to Clayton Valley, the reflectors at Teels Marsh may correspond to contacts between coarse clastic layers, tuff beds (that may or may not be lithified), and clay layers. In general, tephra horizons have not generated unique reflection signatures at Clayton Valley, but they can be traced across the seismic profiles where well data are available to provide corroboration (Spanjers, 2015).

6.6 DAJIN DRILLING

Dajin (now HeliosX) conducted a drill program on the Property in September 2015. Ten holes were drilled at nine sites for a total of 437 m (1435 ft) using a Geoprobe 6600-series truck-mounted direct-push drill (Coolbaugh and Hickson, 2017) (Figure 6-5; Table 6-1). Drill holes were nominally 3.81 cm (1.5 in) and ranged from 18 to 61 m (60 to 200 ft). The objective of the program was to drill a fence of holes across the playa, beginning in the northwest, where lithium in brines and sediments

was found to be highest in the auger program. Unfortunately, soft ground conditions limited access to the western part of the playa, so drilling was confined to the eastern and peripheral parts (Figure 6-5). The unpredictability of solid, reliable access conditions prompted Dajin now HeliosX) to engineer and construct all-weather access in 2018.

In general, one water sample was retrieved from each hole because entry of waters from multiple aquifers can cause contamination. In one case, however, (hole 2, Table 6-1), a second aquifer at shallower depth generated artesian flow, so a second sample was taken after sufficient flow had occurred and after conductivity measurements verified a chemistry different from that of the deeper aquifer. At another site (holes 6a and 6b,Table 6-1), two holes were drilled; the first hole drilled 30 m (100 ft), with a water sample retrieved from 29 m (95 ft), and the second hole drilled to 61 m (200 ft) and sampled at 55 m (180 ft). A total of 11 groundwater samples plus one duplicate groundwater sample (hole 7) were obtained from 10 holes drilled at nine sites (Table 6-1).

Two types of sediment samples were taken from drill holes. Sludge samples were taken of the sediment that settled out in buckets during the sampling of groundwater from the Geoprobe holes. In addition, for three holes, sediment cores were extracted from the uppermost 7.6 to 9.1 m (25 to 30 ft) using a 1.52 m long (60 in) Macro-Core® single-tube soil sampler. The core was selectively subsampled for mineralogical determinations (XRD analyses) and chemical analyses.

Details of the analytical results are presented in Coolbaugh and Hickson, (2017), and are briefly summarized below. Lithium concentrations in the sampled waters were in most cases below a detection limit of about 1 mg/L, with one sample yielding 1.8 mg/L. Boron concentrations ranged from <5 to 468 mg/L and potassium ranged from 43 to 5,000 mg/L. Lithium in the core and groundwater sludge samples ranged from <5 to 310 ppm and boron ranged from <5 to 8,600 ppm.

Geoprobe drilling intercepted relatively carbonate-rich brine with low lithium concentrations in the shallow portions of the extreme northeastern portion of the playa. Higher concentrations of lithium, up to 79 mg/L, were measured from auger brine samples in the extreme northwestern corner of the playa (Figure 7-6).

As noted above, drilling could not test the western half of the playa due to difficult ground conditions. In that area lithium concentrations are highest in near-surface brines and sediments (Figure 7-6; Figure 7-7). Future exploration should test the deeper sub-surface in the western area for potential lithium-enriched brines. Such lithium-enriched brines might also occur at greater depths beneath the eastern portion of the playa, due to the tendency of high-TDS brines to sink because of their relatively high density compared to more dilute waters.

After Coolbaugh and Hickson (2017)									
Hole No.	Total Depth (ft)	Sample Depth (ft)	рН	Conductivity (ms)	B (mg/L)	Li (mg/L)	Cl (mg/L)	Na (mg/L)	HCO₃ (mg/L)
DTM002	200	120	10.1	2,865	7	<1.0	524	700	28.3
DTM002	200	178	8.64	9,020	9	<1.0	2,570	1,700	119.6
DTM003	200	195	9.02	2,422	<5	<1.0	770	500	37.8
DTM004	183	178	8.21	3,253	<5	<1.0	1,060	700	111.7
DTM005	60	55	10.13	7,560	30	<1.0	1,870	1,800	40.4
DTM006a	100	95	9.34	272,700	170	<1.0	68,100	59,600	7,308.7
DTM006b	200	180	8.56	52,600	26	1.8	15,000	11,000	1,878.2
DTM007	152	95	9.25	440,000	453	<0.9	85,700	86,600	14,222.8
DTM007 (dup)	152	95	9.25	440,000	468	<0.9	87,200	87,800	13,939.7
DTM008	115	90	9.51	436,400	329	<0.9	85,000	83,000	7,363.9
DTM009	110	65	9.23	420,600	314	<1.8	88,600	89,600	7,875.5
DTM010	115	85	9.98	68,800	136	<0.9	15,100	12,300	0

Table 6-12015 Geoprobe Holes: depth, sample depth, selected analyses

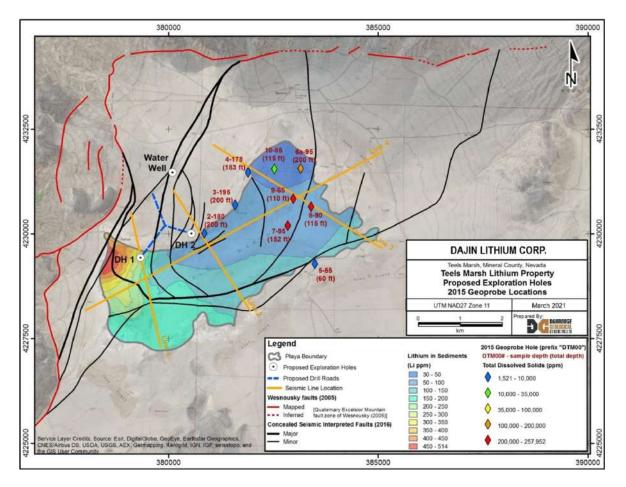


Figure 6-5 Total dissolved solids in groundwater sampled Geoprobe drilling

Lithium in sediments (after Coolbaugh and Hickson, 2017)

7 GEOLOGICAL SETTING AND MINERALIZATION

Section 7 of this report relies extensively upon material contained in various published technical reports and USGS open file reports, as well as the compilation presented in Coolbaugh and Hickson (2017) with some edits and additions.

7.1 **REGIONAL GEOLOGY**

Nevada lies in the western portion of the North American craton. Geologic events that have affected the craton since the late Proterozoic include continental rifting, subsequent deposition of oceanwater clastic sediments, volcanic rocks, and carbonate rocks during the Paleozoic and Mesozoic Eras, and a series of compressional events and thrusts associated with continental collisions which took place during the Paleozoic and Mesozoic (Stewart, 1980). The younger of these compressional events include the Nevadan and Sevier Orogenies, which left behind a series of plutonic intrusive rocks in eastern California and western Nevada (e.g., the Sierra Nevada batholith), which are deep expressions of volcanic arcs (Stewart, 1980).

During the Cenozoic Era, most of Nevada and parts of adjoining states experienced an episode of felsic volcanism and caldera development termed the "ignimbrite flare-up", believed to have developed in response to foundering of a flat slab of subducted oceanic crust (Henry and John, 2014). This felsic volcanism is locally expressed in the Teels Marsh catchment basin by the late Oligocene Candelaria Hills sequence of rhyolitic tuffs (Robinson and Stewart, 1984). After deposition of the tuffs, volcanism continued with a series of mostly intermediate to mafic volcanic rocks associated with the ancestral Cascade Arc.

Approximately coincident with close of the "ignimbrite flare-up", extensional tectonics affected what is now Nevada, leading to the formation of "Basin and Range" topography, characterized in central Nevada by a series of north-south-trending horsts and grabens. This pattern of extension is interrupted by more complex topography along the western margin of the Basin and Range in an area termed the "Walker Lane", within which Teels Marsh lies. The Walker Lane is a zone of active right-lateral strike-slip faults driven by dextral shearing of the Pacific plate against the North American plate; approximately 20-25% of that relative plate motion is accommodated by faults in the Walker Lane and the remainder by the San Andreas fault system in California (Bennett et al., 1998).

7.2 **PROPERTY GEOLOGY**

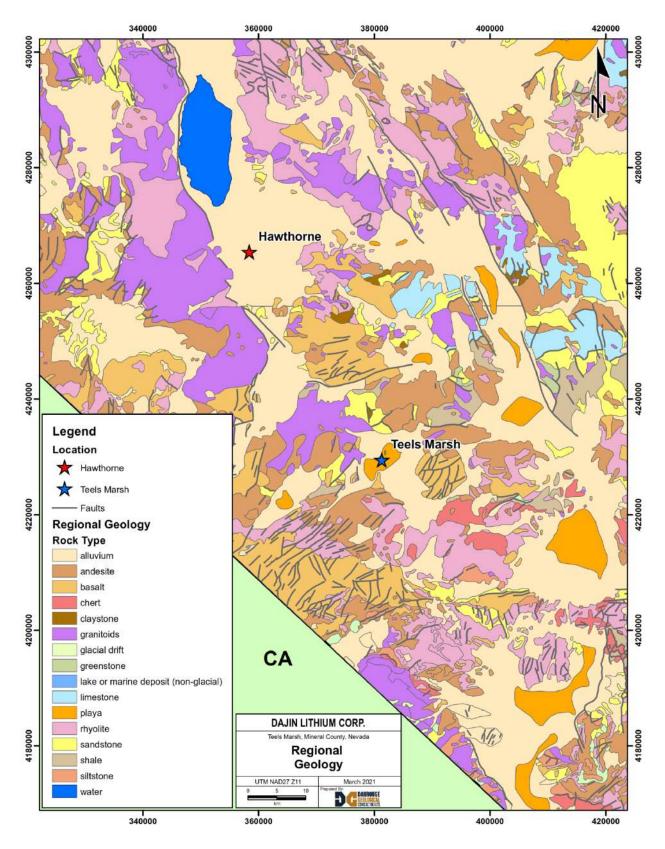
This section of the report is adapted from Coolbaugh and Hickson (2017) and is drawn from Coolbaugh (2016) and Coolbaugh and Faulds (2016), who reported on the geologic and structural settings of Teels Marsh in detail.

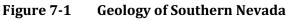
7.2.1 Local Geology

Pre-tertiary rocks exposed in the hills and mountains around Teels Marsh (Figure 7-2) include shales and chert of the Ordovician Palmetto Formation, interbedded Permian volcanogenic sedimentary rocks and volcanic breccias and mafic intrusions of the Mina Formation, Triassic siltstones of the

Candelaria Formation, and Mesozoic clastic sedimentary rocks of the Dunlap Formation (Stewart, 1984; Stewart et al., 1984a, 1984b). These formations are intruded on the north and west sides of Teels Marsh by plutonic rocks ranging in composition from diorite to granite (including granite of Whiskey Flat, and Silver Moon, granodiorite of Huntoon Valley, and diorite).

The pre-Tertiary rocks are overlain by a sequence of Oligocene to Miocene silicic tuffs comprising the Candelaria Hills sequence (Figure 7-2, Robinson and Stewart, 1984). The tuffs are overlain in turn by andesitic volcanic rocks, which in turn are overlain by Tertiary basalts with minor intercalated tuffs and sedimentary rock including diatomite (Stewart, 1984). The Tertiary volcanic rocks comprise most surface and near-surface rocks within the catchment basin of Teels Marsh, most of them lying south of Teels Marsh. The Candelaria Hills tuffs, because of their felsic composition, are a potential source of lithium introduced into groundwater. A measured tuff section south of Teels Marsh is 150 metres thick with an unexposed base and is composed of at least 10 distinct units. The eruptive source of these tuffs is believed by Robinson and Stewart (1984) to lie in the Candelaria Hills approximately 20 to 25 km southeast of Teels Marsh.


Quaternary rocks include alluvial gravels, alluvial fan deposits, and lacustrine clays, clastics, volcanic tephra, and evaporites. Basin-fill deposits in Teels Marsh, as documented in shallow auger holes and pits (Taylor and Surdam, 1981; Evans, 2015), include variably colored, locally sulfide-bearing clay, sands, silts, evaporites, and air-fall tuff (tephra). The evaporites include sodium chloride, trona, burkeite, gaylussite, and the boron minerals borax, tincalconite, teepleite, gaylussite and northupite have also been identified in shallow cores (Jones et al., 2015, Coolbaugh and Hickson, 2017).


7.2.2 Structural Geology

In the vicinity of Teels Marsh, the Walker Lane structural zone is characterized by subparallel eastnortheast-striking sinistral faults and north-northeast- to northeast-striking normal faults; this region is called the Mina Deflection. The Mina Deflection transfers a portion of dextral strike-slip motion from the western margin of the Walker Lane northward to the eastern portion of the Walker Lane (Coolbaugh, 2016).

The Mina Deflection contains four principal east-northeast-striking sinistral fault systems, which are, from north to south: the Rattlesnake, Excelsior Mountain, Candelaria, and Coaldale faults (Figure 7-3; Wesnousky, 2005). In most cases, these fault systems terminate on their western and eastern ends at subsidence basins that are located where the faults change from an east-northeasterly strike to a more north- to northwesterly strike. Concomitant with the change in strike is a shift from sinistral motion to normal motion (Wesnousky, 2005). Basin development at the ends of these faults is driven by west-northwest-directed extension and/or clockwise block rotation (Wesnousky, 2005), and the relative importance of these two mechanisms has been debated (Coolbaugh, 2016).

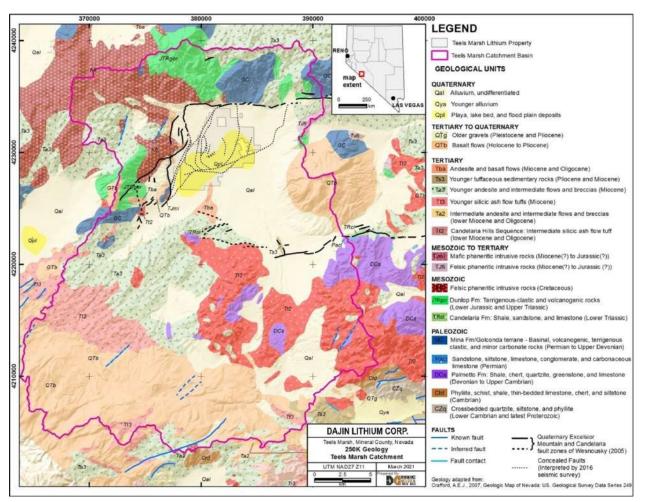


Figure 7-2Geologic Map of the Teels Marsh Catchment Basin

after Crafford (2007), Wesnousky (2007), and Coolbaugh and Faulds (2016)

Teels Marsh is located at the western mapped terminus of the Excelsior Mountain fault system (Figure 7-3). As mapped by Wesnousky (2005), the Excelsior Mountain fault bounds Teels Marsh basin on its northern and western margins. On the north side of Teels Marsh, the Excelsior Mountain fault is east-northeast-striking and displays sinistral strike-slip motion, but the fault abruptly changes strike in the northwest corner of the basin, from which it bears southwest, forming a braided system of curving normal faults, some with steep range fronts up to 500 metres high (Figure 7-4). As a left-bend or step-over in a left-lateral fault system, the north-northeast-striking portion of the fault system represents an extensional environment that contributed to the formation of Teels Marsh basin. The north-northeast strike is also ideally oriented in the modern-day stress field for extension (Coolbaugh, 2016).

The stronger development of faulting on the north and west sides of the basin compared to the east and south sides has led to the development of a composite half-graben within the basin. Seismic profiles and detailed gravity modelling document a deep, central half-graben up to 2.5 km deep located beneath Teels Marsh, lying within an outer half-graben bounded by the Excelsior Mountain

fault (Figure 7-3and Figure 7-4). The pattern of faulting and development of these grabens are discussed further in section 9.6.

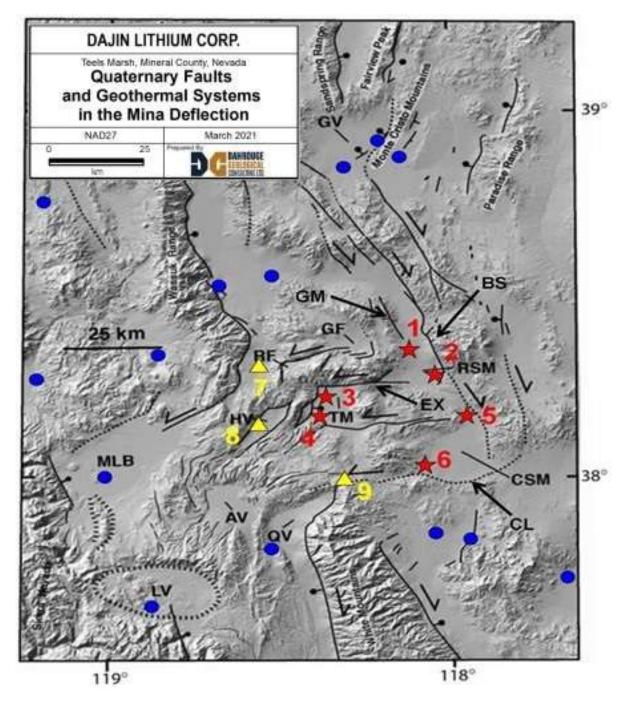
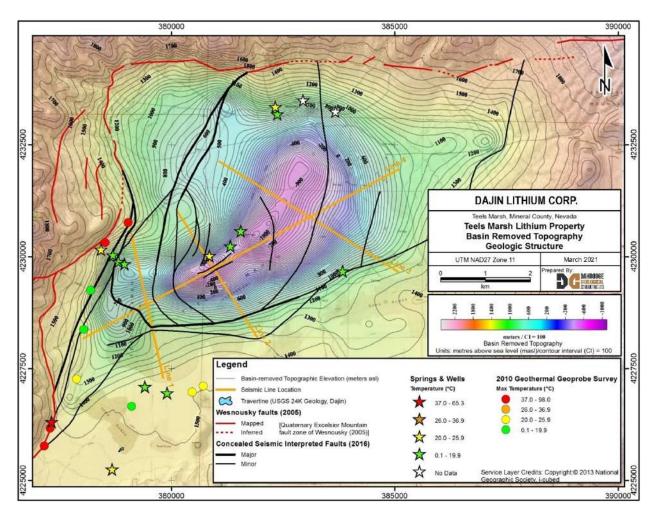
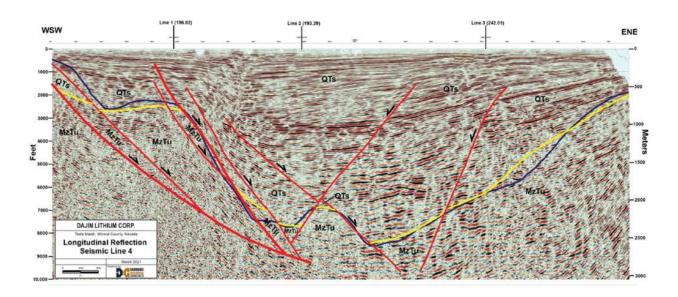



Figure 7-3 Faults and geothermal systems in the Mina Deflection.

Geothermal areas: 1 = Sodaville, 2 = Rhodes Marsh, 3 & 4 = North & south Teels Marsh, 5 = Redlich, 6 = SW Columbus Marsh; and thermal wells 7, 8, and 9 at Whiskey Flat, Huntoon Valley, and NE of Queen Valley, respectively. RSM = Rhodes Salt Marsh, TM = Teels Marsh, CSM = Columbus Salt Marsh, GF = Garfield Flat, HV = Huntoon Valley, RF = Rattlesnake Flat, MLB = Mono Lake Basin, LV = Long Valley caldera, AV = Adobe Valley, QV = Queen Valley, GV = Gabbs Valley, EX = Excelsior Mountain fault, GM = Gumdrop Hills fault, CL = Coaldale fault, BS = Benton Springs fault. Blue circles are geothermal systems outside the Mina Deflection with measured or estimated temperatures >70°C. After Coolbaugh et al. (2006) and originally adapted from Wesnousky (2005).



The basin-removed topographic model is based on modeling of a detailed gravity survey (Wright, 2015). Black lines are faults interpreted from the reflection seismic survey by Coolbaugh and Faulds (2016). Red lines are faults of the Excelsior Mountain fault system mapped by Wesnousky (2005).

Figure 7-5 Longitudinal reflection seismic line 4 in Teels Marsh, looking northwest.

The surface trace of this line is shown in Figure 7-2. Red lines are interpreted faults, and the yellow line is the interpreted contact between basin-fill deposits above and rocks below. Gray line is the basin fill-rock contact from the basin-removed topographic elevation model of Wright (2015). QTs = Quaternary and Tertiary sediments, MzTu = undivided Mesozoic and Tertiary rocks. Labels to left and right of figure are depth measured in thousand-foot-intervals, with lowest depth of 10,000 feet (3,048 meters). Vertical to horizontal scale is 1:1. Figure taken from Coolbaugh and Faulds (2016).

7.3 MINERALIZATION AND ALTERATION

7.3.1 Lithium and Boron in Brines and Sediments

Lithium-bearing playa brine is the primary economic objective of the Dajin (HeliosX) exploration program at Teels Marsh. The subsurface of the playa contains groundwater brines, as evidenced by Geoprobe drilling that encountered concentrations as high as 87,000 mg/L chloride (see section 10 below). Further evidence of brines is provided by the presence of shallow salt layers encountered in auger and Geoprobe drilling and by the presence of efflorescent salts at the surface. Compositionally, the shallow brines are broadly characterized as sodium chloride-sulfate and sodium chloride-carbonate brines; the carbonate-rich brines fit a "moderate carbonate type" of saline lake classification described by Zheng and Liu (2009).

Lithium concentrations in most of the shallow subsurface (<3 metres) brines at Teels Marsh are less than 10 mg/L. Higher grades occur in the northwest corner of the playa, where concentrations range up to 79 mg/L lithium (Figure 7-6). Lithium concentrations could be higher at greater depths, because near-surface brines at times suffer dilution from periodic surface flooding. At Clayton Valley, lithium-rich brines were not discovered until subsurface exploration began (Davis, 1986).

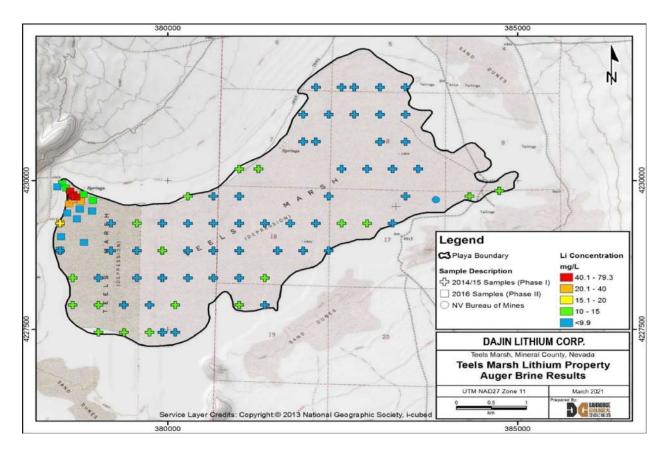


Figure 7-6 Lithium concentrations in shallow auger groundwater sampled by Dajin.

(after Coolbaugh and Hickson, 2017)

Sediments sampled by Dajin (now HeliosX) from shallow auger and Geoprobe holes contain from 24 to 740 ppm Li; similarly, shallow sediments sampled by the USGS in Teels Marsh ranged from 13 to 850 ppm Li (Bohannon and Meier, 1976). Lithium concentrations in auger sediment samples progressively increase from northeast to northwest in the playa (Figure 7-7), with the highest concentrations approximately coinciding with elevated shallow lithium brine concentrations (Figure 7-6). These analyses confirm that anomalous concentrations of lithium are present in the basin, lending plausibility to the presence of lithium brines in unexplored deeper portions of the basin.

Lithium has a known affinity for magnesium clays in lacustrine environments, forming minerals such as hectorite, and, under hydrothermal conditions, tainiolite. At Teels Marsh, limited x-ray diffraction and chemical analyses (Jones et al, 2015) show a lack of correlation of lithium with smectite, potassium, or illite/mica, arguing against the presence of hectorite or tainiolite. Lithium does correlate with magnesium, sodium, boron, and the boron mineral searlesite. Searlesite has been identified as an alteration product of volcanic tephra at Teels Marsh (Taylor and Surdam, 1981), but is not known to be a specific carrier of lithium. One hypothesis is that circulating lithium and boronbearing brines may have reacted with volcanic ash layers in the subsurface to form searlesite, zeolite minerals and an as-of-yet unidentified magnesium and lithium-bearing clay (Coolbaugh and Hickson, 2017).

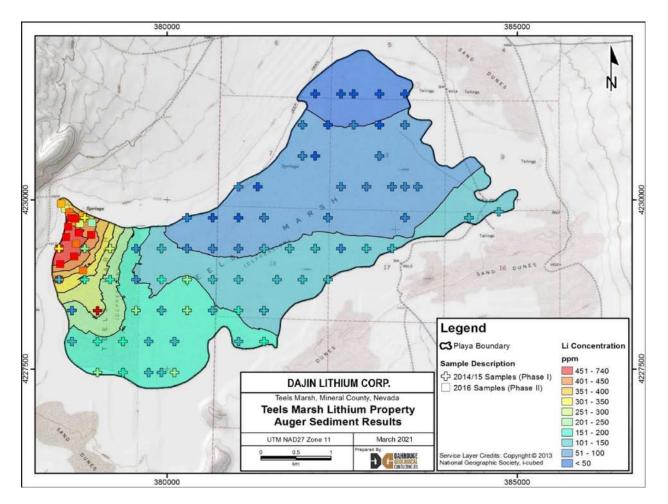


Figure 7-7 Lithium concentrations in shallow auger sediments sampled by Dajin.

(After Coolbaugh and Hickson, 2017)

7.3.2 Alteration

Multiple thin tephra layers were encountered in shallow auger holes at Teels Marsh, and they have been variably altered to zeolites (phillipsite with lesser analcime, chabazite, and clinoptilolite), gaylussite, calcite, gypsum, and searlesite (Taylor and Surdam, 1981; Jones et al., 2015). The degree of alteration of the tephra is spatially variable, but a general correlation has been observed between underlying areas of altered tephra and areas of more strongly developed efflorescent salt layers at the surface. This suggests that alteration has been caused by the action of groundwater as it flows towards the surface to replace evaporated fluids (Coolbaugh and Hickson, 2017).

7.3.3 Borate Mineralization

As mentioned in the preceding section, borates were mined in the late 1800s in the eastern portion of the playa (Figure 6-1). The borates consist of efflorescence crusts composed primarily of borax and its surface dehydration product, tincalconite (Papke, 1976); teepleite has also been identified (Crowley, 1991). The mineralogy is different from that of borates mined from nearby playas in

southwestern Nevada, including Columbus Marsh, Rhodes Marsh, and Fish Lake Valley, where the principal borate mineral was ulexite. Ulexite was more difficult to mine and refine into borax in the 1800s (Papke, 1976), in part explaining why the borates at Teels Marsh were worked more extensively.

The formation of borax (a sodium borate) instead of ulexite (a sodium-calcium borate) at Teels Marsh has been attributed to the presence of sodium carbonate in the brine, which suppresses the formation of ulexite (Papke, 1976). This relationship was understood at an early date, likely because sodium carbonate was used as a chemical additive in the refinement of ulexite ores to facilitate dissolution (Papke, 1976). The shallow playa brines are relatively rich in dissolved carbonate species (Papke, 1976; section 10 below), with sodium carbonate and bicarbonate comprising up to 28% by weight of total solutes in saline brines at depths of 55 to 95 feet (16.8 to 29.0 metres). The sodium carbonate minerals trona and burkeite are also present in the surface efflorescence crusts at Teels Marsh (Everts, 1969; Crowley (1991), and except for restricted areas where borates are also important, trona and burkeite are the most abundant surface salt minerals after halite.

7.3.4 Geothermal Activity

Shallow thermal groundwater occurs outside the northwest and southwest margins of Teels Marsh (Figure 6-1). This geothermal activity appears focused along fault intersections and curving flexures of normal faults within the Excelsior Mountain fault zone (Coolbaugh et al., 2013). This is consistent with the tendency of active geothermal systems of the Great Basin to form along the structurally complex portions of extensional faults (Faulds and Hinz, 2015).

Fluid geothermometry from thermal water samples collected from Geoprobe holes drilled in 2010 predict subsurface fluid temperatures of 140-155°C or higher (Coolbaugh et al., 2013). The thermal waters are dilute sodium-chloride-sulfate fluids low in chloride content (200-300 mg/L, Coolbaugh et al., 2013), very different compositionally from the high-salinity brines that characterize the playa environment. This indicates that geothermal fluid circulation at depth is largely confined to bedrock beneath and marginal to the basin and that high-salinity basin groundwater is not contributing significantly as a source of fluids for the deeper thermal waters. Nevertheless, a portion of thermal fluids could be entering unconsolidated sediments in the basin and mixing with saline brines. Evidence for this includes anomalous geothermometry from cold springs that flow into the playa and the presence of the surface borate deposits on the east side of the playa. Borate minerals have been correlated at a regional scale with geothermal activity (Coolbaugh et al., 2006), but no thermal waters have yet been encountered in the immediate vicinity of the Teels Marsh borate areas on the eastern side of the playa.

In addition to the geothermal activity described above, an area of thermal springs associated with calcium-carbonate travertine terraces occurs over a broad 6 km x 2 km area approximately 4 km south of Teels Marsh and within the Teels Marsh catchment basin (Figure 6-1, Stewart, 1984; Stewart et al., 1984b). These springs occur along faults near the western termination of the Candelaria fault zone mapped by Wesnousky (2005). Measured temperatures of these springs range from 18 to 35°C. A small area of travertine in the extreme southwest corner of Teels Marsh basin is associated with 2-

metre temperatures as high as 25°C (see point "C", Figure 6-1), suggesting that some of these sodium carbonate-rich thermal waters are directly entering the playa environment. Additional evidence of entry of sodium-carbonate-rich thermal groundwater is provided by geochemical trends in shallow brine samples (Coolbaugh and Hickson, 2017).

7.4 HYDROGEOLOGIC SETTING

The hydrogeologic setting of a closed basin bears on its lithium brine potential. The presence of permeable aquifers is also important for the commercial extraction of lithium brines. As evidenced at the Clayton Valley lithium operation located 85 km to the southeast, such aquifers can potentially form in clastic rocks (conglomerates), volcanic tephra layers, salt beds, and calcium carbonate tufa deposits.

Lithium brines develop slowly over time through the effects of evaporative concentration of surface waters and upwelling groundwater in closed basins. Consequently, the magnitude of lithium enrichment is affected by the age of the catchment basin, size of the catchment basin, evaporation rates, mass flux of dissolved lithium in groundwater and surface water entering the playa basin, and the availability of source rocks containing lithium that can be dissolved by groundwater. Geothermal systems may also play a role in enhancing the ability of groundwater to leach lithium from surrounding rocks (Houston et al., 2011; Munk et al., 2015). Detailed discussion of the hydrogeologic setting of Teels Marsh is presented in Coolbaugh and Hickson, 2017, Coolbaugh et al., 2013).

7.4.1 Basin Characteristics

The Teels Marsh catchment basin has a surface extent of 810 km². In addition to receiving recharge from this primary catchment, Teels Marsh may also receive recharge from the adjacent Huntoon Valley to the west, which lies at a higher elevation and has an apparent imbalance between estimated recharge and estimated evapotranspiration (Van Denburgh and Glancy, 1970). This imbalance suggests that Huntoon Valley loses groundwater to adjacent basins, of which Teels Marsh is a prime candidate (Van Denburgh and Glancy, 1970) because of its proximity to Huntoon Valley and the presence of Quaternary faults that connect the two. The catchment area of Huntoon Valley covers 300 km².

7.4.2 Potential Sources of Lithium

Felsic pyroclastic rocks (rhyolite flows and tuffs) are potential sources of lithium because their initial glass phases commonly have high lithium concentrations (34 to 3,400 ppm Li, mean of 84 ppm for continental interior obsidians, (Macdonald et al., 1992)) and because much of this lithium may be available to groundwater during the weathering and devitrification of volcanic glass (Price, et al., 2000; Hofstra, et al., 2013). Felsic pyroclastic rocks in the Teels Marsh catchment basin include the Candelaria Hills sequence of Oligocene to Miocene silicic tuffs), and Quaternary air fall tuffs from the Long Valley Caldera (e.g., the Bishop Tuff) and Mono Lake areas. The Candelaria Hills sequence has a measured thickness of at least 150 metres in the catchment basin south of Teels Marsh (Robinson

and Stewart, 1984) and these rocks are projected to underlie much of the southern half of the catchment.

Multiple air fall tephra layers have been identified in the uppermost 6 m (20 ft) of Teels Marsh sediments (Taylor and Surdam, 1981), and tephra layers comprise important aquifers in the Clayton Valley lithium operation. The largest and thickest known Quaternary tephra is the Bishop Tuff, erupted from the Long Valley Caldera north of Bishop, California. At Clayton Valley, the Bishop Tuff has thicknesses ranging from 1.5 to 9.1 m (5 to 30 ft) (Zampirro, 2004). Given the relative proximity of Teels Marsh to the Long Valley Caldera (70 km to the southwest), the Bishop Tuff is likely to have a significant thickness in Teels Marsh basin, but it is not exposed at the surface. Melt inclusions in the Bishop Tuff, which are considered representative of original chemical compositions prior to surface weathering, average 74 ppm Li (Hofstra et al., 2013), suggesting that the Bishop Tuff is a potential source of lithium for brines.

7.4.3 Aquifers

Little is known about the presence and distribution of aquifers in the subsurface at Teels Marsh because most auger holes are less than 40 feet (12 metres) deep, and cores from Dajin (now HeliosX) Geoprobe holes were taken from depths not exceeding 25 feet (7.6 metres). Based on geomorphologic and geographic location similarities with other basins in west-central Nevada, including Clayton Valley to the southeast, permeable horizons could include clastic layers, especially coarser clastics such as sands and gravels with a low clay content, as well as layers of volcanic tephra and evaporite beds. Of these, coarse clastic layers and tephra are likely to be most important.

Coarse clastic layers, including conglomerates, may exist at Teels Marsh because the distance from the marsh to adjacent mountains is relatively short and the topographic profile from the range to the basin is relatively steep. This geomorphology is characteristic of "immature basins" and such basins commonly have a significant component of clastic permeability (Houston et al., 2011).

Quaternary tephra layers could also provide significant sources of permeability, as is the case at Clayton Valley (Davis et al., 1986; Zampirro, 2004). The most important tephra aquifer at Clayton Valley is the Bishop Tuff (Zampirro, 2004), erupted from the Long Valley caldera. Given the regional distribution of this tephra it is likely that significant thicknesses occur in the subsurface in Teels Marsh basin. Deeper drilling and flow tests are required to evaluate the presence of viable aquifers. At this stage, their presence is inferred.

7.4.4 Geothermal Activity

Geothermal waters surrounding the western margin of Teels Marsh have lithium concentrations of 0.6 to 0.8 mg/L (Coolbaugh and Hickson, 2017). These concentrations are lower than those of lithium brines, but they are typical of thermal groundwater in Nevada, and they are distinctly higher than Li concentrations in non-thermal groundwater in Nevada (average of 0.18 mg/L). On-going geothermal activity is generally viewed as a favourable factor for lithium-brine formation. Evaporation trends in shallow brine geochemical data at Teels Marsh support the concept that lithium-bearing geothermal

waters are entering the basin brine system, but the magnitude of lithium mass flux of geothermal groundwater into Teels Marsh remains undefined (Coolbaugh and Hickson, 2017).

7.4.5 Fluid Flow Patterns

Surface runoff in the Teels Marsh catchment basin drains to Teels Marsh, which occupies the lowest elevation part of the catchment. At the playa, surface water, as well as a portion of more deeply circulating geothermal water, evaporates in the hot, dry desert environment, leaving behind residual brine concentrated in dissolved salts. As the brine becomes progressively concentrated, salt minerals precipitate. At Teels Marsh, these minerals include halite, trona, burkeite, borates, and other less common minerals. The high solubility of lithium in brine solutions, combined with its generally low concentration relative to major rock-forming solutes, enables it to remain in solution even while other salts, including borates, precipitate (Coolbaugh and Hickson, 2017).

8 **DEPOSIT TYPE**

The deposit type being explored at Teels Marsh is lithium brine (Bradley et al., 2013). Lithium brines commercially exploited today occur as shallow saline lakes (China) and/or as saline aquifers beneath dry lakes (playas or salars, in North and South America). These lakes or playas occur in closed basins without external drainage, in dry desert regions where evaporation rates exceed stream and groundwater recharge rates, preventing lakes from reaching the size necessary to form outlet streams or rivers. Evaporative concentration of surface water over time in these basins leads to residual concentration of dissolved salts (Bradley et al., 2013) to develop saline brines enriched in one or more of the following constituents: sodium, potassium, chloride, sulfate, carbonate species, and, in some basins, rare metals such as boron and lithium. When lithium concentrations exceed 100-200 mg/L, the "lithium" brines can be processed through a two-step process of evaporative concentration in surface solar ponds, followed by treatment in a chemical processing plant (e.g., Davis et al., 1986). Currently, new ion exchange technologies are being developed which may circumvent the solar pond step and conserve water.

Most playa waters do not have economic concentrations of lithium. Favourable conditions for the development of lithium-rich brines include: 1) arid climate, 2) a closed basin with a playa (or salar), 3) tectonically driven subsidence, 4) associated igneous or geothermal activity, 5) suitable lithium source rocks, 6) one or more adequate aquifers, and 7) sufficient time to concentrate a brine (Bradley et al., 2013).

Teels Marsh meets, or is likely to meet, all the conditions mentioned above. The basin occurs in an arid climate (condition 1) in a closed basin with a playa (condition 2), in an area of tectonically driven subsidence (condition 3) with associated geothermal activity (condition 4). Condition (5), suitable source rocks, as discussed in section 7.4.2, could be provided at Teels Marsh by the presence of mid-Tertiary ash flow tuffs associated with the adjacent Candelaria volcanic center, as well as by Quaternary felsic air-fall tuffs related to the Bishop Caldera and Mono Lake. Condition (6), the presence of aquifers, as discussed in section 7.4.3, could be provided by subsurface air-fall tuffs (tephras) and/or clastic sedimentary layers resulting from intermittent floods from the adjacent alluvial fans. The presence of either type of stratigraphy will not be known with certainty until the basin has been tested by drilling. Condition (7), time to concentrate brine, should be met by the 3-million-year period over which tectonic subsidence in the Mina Deflection, including Teels Marsh, is believed to have taken place (Oldow et al., 2008). Additionally, this part of Nevada has been repeatedly subjected to drying conditions during multiple interglacial periods.

The closed basins that host lithium brines around the world have been divided into two types by Houston et al. (2011); mature basins and immature basins. Mature basins have relatively low precipitation rates relative to evaporation rates, relatively thick evaporite layers dominated by halite, and permeability is hosted largely by near-surface evaporites (Houston et al., 2011). Immature basins have somewhat higher precipitation to evaporation ratios compared to mature basins, a greater abundance of clastic sediments, and permeability is commonly hosted by clastic sediments (Houston et al., 2011). The Atacama and Hombre Muerto lithium brines in Chile and Argentina, respectively, occur in mature basins, whereas the Clayton Valley, Nevada (Spanjers, 2015) and

recently developed Olaroz-Cauchari, Argentina lithium brines (Houston et al., 2011) occur in immature basins. Teels Marsh is similar to Clayton Valley fitting the definition of an immature basin based on the relative abundance of fine clastic layers relative to evaporite layers in shallow auger holes (Coolbaugh and Hickson, 2017).

Most lithium brines currently in production in North and South America have sodium-chloridesulfate (Na-Cl-SO4) or sodium-chloride-calcium (Na-Cl-Ca) compositions with low concentrations of magnesium. Magnesium is a deleterious element that interferes with the economical extraction of lithium (Kesler et al., 2012). Lithium brine being extracted from one basin in China (Zheng and Liu, 2009) contains relatively high concentrations of carbonate, such that it could be classified as a Na-Clcarbonate brine, or a "carbonate-type" brine according to the nomenclature described by Zheng and Liu (2009). As documented in section 10, shallow brines at Teels Marsh include Na-Cl-SO4 and Na-Cl-carbonate types and have exceptionally low Mg concentrations (< 5 mg/L).

The hydrogeological setting of a closed basin bears on its lithium brine potential. Lithium brines develop slowly over time through the effects of evaporative concentration of surface waters and upwelling groundwater in closed basins. Consequently, the magnitude of lithium enrichment is affected by the age of the catchment basin, size of the catchment basin, evaporation rates, mass flux of dissolved lithium in groundwater and surface water entering the playa basin, and the availability of source rocks containing lithium that can be dissolved by groundwater. Geothermal systems may also play a role by enhancing the ability of groundwater to leach lithium from surrounding rocks (Houston et al., 2011; Munk et al., 2015).

Specific paths of playa brine evolution can be complex and diverse. Some brine may re-mix with incoming fresh groundwater or ephemeral stream water, whereas at other locations and times, salt brines may sink to depths in the playa basin because of their greater density relative to fresher water. Individual tephra layers or clastic sediment layers can serve either as aquifers to transport incoming groundwater and geothermal water, or they can store brines concentrated by evaporation. Faults may act as conduits connecting one sub-horizontal aquifer to another, or they can serve as barriers to flow, enabling lithium-bearing brines to accumulate in some structural blocks without contamination from dilute groundwater. Finally, conductive heating by underlying geothermal fluids could potentially induce circulation in a portion of basin brines that lie within hydrologically connected regions.

The role that geothermal activity plays in the development of lithium-brines in closed basins is debated. Evidence suggests that much of the lithium in glassy felsic volcanic rocks is efficiently removed during non-thermal devitrification and weathering processes (Price et al., 2000; Hofstra et al., 2013). On the other hand, it is argued that elevated groundwater temperatures facilitate the extraction of lithium from source rocks (Houston et al., 2011). High-temperature geothermal fluids are commonly enriched in lithium (Kesler et al., 2012), and many lithium-brine deposits and lithium-rich clay deposits occur in proximity to past or present geothermal systems (e.g., Clayton Valley, (Davis et al., 1986; Zampirro, 2004), McDermitt, NV (Eggleston and Hertel, 2008), and the original hectorite occurrence at Hector, CA (Ames et al., 1958)).

9 **EXPLORATION**

Since the most recent Technical Report on the Teels Marsh Property (Coolbaugh and Hickson, effective date March 21, 2017), only construction of drilling access and minor surface sampling has been carried out. Previous work by Dajin (now HeliosX) has been summarized in Section 6.

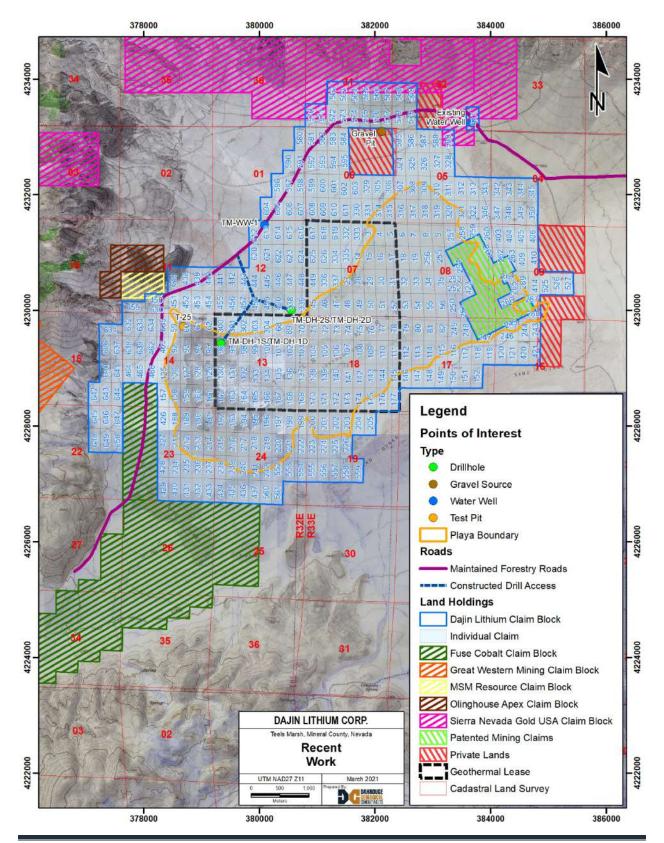
9.1 ACCESS CONSTRUCTION

In early February 2018, Dajin (now HeliosX) began construction of engineered roads, drill pads and sumps on the Property in preparation for the drilling of up to four production-sized exploration wells (Figure 9-1, Figure 9-4). Previous Geoprobe drilling ran into difficulty with soft ground conditions, preventing reliable access to western parts of the playa. Dajin (HeliosX) retained Welsh Hagen Associates, Inc. in Reno, Nevada to carry out this work. Gravel was processed for construction, sourced locally from a nearby private land parcel. The roads will provide all-season access to the drilling pads. These planned exploration wells will be drilled at large diameter using rotary drilling techniques.

The drilling of deep, large-diameter, cased wells with the ability to discharge, will make it possible to assess lithium concentrations in the subsurface aquifers and carry out necessary flow-testing of any aquifers encountered during drilling. Sumps were constructed at each pad large enough to hold a significant volume of material associated with drilling and flow testing of the wells (Figure 9-4 to Figure 9-4).

In addition, because HeliosX holds water rights in Teels Marsh valley, it has previously received temporary approvals from the Nevada Division of Water Resources (State Engineer) for pump-test volumes up to 20 acre-feet per well (see section 4.4.1). These temporary permits are of six months duration and have expired. Application for extension of permit 85204 for a further three years was submitted June 8, 2021 and granted to May 24,2024.

9.2 SURFACE SAMPLES


A near-surface brine sample was collected in September 2020 from the northwest corner of the property at site T-25 (Figure 9-1). An approximate 10 L sample was taken from inflowing brine in a hand-dug pit of about 1.4 m (4.5 ft) depth (Figure 9-5; Figure 9-6).

An aliquot of approximately 250 ml was analyzed at Western Environmental Testing Lab, Reno NV with trace metals analyzed by ALS (Reno) by their ME-MS14 Hydrogeochemistry method (ICP-MS). This sample (filtered) yielded 97,200 mg/L total dissolved solids with 195 mg/L boron and 59.6 mg/L lithium. Magnesium was below detection limits. Of 5 mg/L. A check sample was also sent to Pacific Northwest National Laboratory in Richland, WA. One aliquot of approximately one litre was sent to Lilac Solutions of Oakland CA as a sample for process testing. A further one litre aliquot was sent to Lawrence Berkley laboratories to use for equipment calibration.

Of note in this sample was an anomalous trace element value of > 10,000 μ g/L tungsten. Leaching of tungsten from granitoid rocks has been correlated with elevated lithium concentrations in some

cases (Osvald et al., 2020), which may provide an additional indicator for targeting lithium in brines and source rocks in future exploration.

Figure 9-1Drilling Access and Recent Surface Sampling at Teels Marsh

Figure 9-2 Drill Pad DH-2 Under Construction – looking west

Figure 9-4 Constructed Drill Pad and Sump

Figure 9-5Brine pit at Site T-25 Sept, 2020

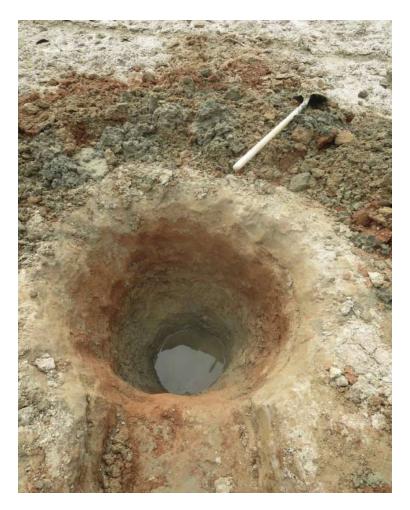


Figure 9-6 Completed brine pit at Site T-25 Sept 2020

10 DRILLING

As of the date of this report, no drilling has been conducted on the Property since the shallow Geoprobe perimeter drilling conducted in 2015 and discussed in Section 6.6.

11 SAMPLE PREPARATION, ANALYSES, AND SECURITY

This section describes the sampling methods, preparation methods, analytical methods, quality assurance and quality control assessments, and security employed by HeliosX (formerly Dajin) and its agents and contractors during Dajin's exploration work at Teels Marsh between 2014 and 2016. Further details are presented in Coolbaugh and Hickson, (2017). Since then, other than one surface brine sample, only access construction has been undertaken

11.1 FIELD SAMPLE PREPARATION

11.1.1.1 Western Geoscience Auger Sampling

Two sediment samples were taken from each auger hole, one representative of sediment above the water table ("A" sample) and the other of sediment below the water table ("B" sample). The sediments were placed in Hubco Sentry II polypropylene bags that allowed excess fluid to seep out while retaining fines. After hole completion, a 100-ml groundwater sample was taken using a vial attached to a long, thin plastic pole. The fluid was filtered at 25 microns, acidified in the field to a pH of 3.0 using reagent-grade nitric acid and filter papers, and placed in a clean polyethylene bottle (Evans, 2015).

11.1.1.2 Pediment Gold LLC Auger Sampling

Three types of water samples were taken at all sites:

- 60-250 ml volume sample for cation analysis, which was filtered at 5 μ m, then placed in a lab-supplied bottle with a lab-supplied aliquot of nitric acid.
- 200-250 ml volume sample for anion analysis, filtered at 5 μ m and placed in a lab-supplied bottle and kept cool without acidification.
- Reference 1-liter sample, not filtered or acidified.

At six locations, an additional three groundwater samples were taken from the auger holes. They were taken to evaluate possible relationships between lithium concentrations and degree of filtering and type of acidification. These samples comprised:

- Unfiltered sample acidified with nitric acid.
- Unfiltered sample acidified with hydrochloric acid.
- Sample filtered to $0.45\,\mu m$ and acidified with nitric acid.

At the laboratory (WetLabs), a split of the 0.45 μ m sample was further filtered to 0.20 μ m.

11.1.1.3 Geoprobe Sampling

Sediment was allowed to settle out of the sample until visual clarity was achieved, and field measurements of conductivity, pH, NO₂, NO₃, and SO₄ were taken. The water was then filtered in two stages, first to 5 μ m and then to 0.45 μ m. All tubing and containers that came into contact with groundwater were rinsed with sample solution at least three times before each use. A set of three water samples was taken at each sampled depth:

- 60 ml filtered sample acidified with nitric acid (for cation analysis).
- 60 ml filtered but not acidified sample (for anion analysis).
- 125 ml unfiltered and not acidified sample for reference purposes.

The sediment that settled out in the 20 L (5 gal) bucket during sample preparation was collected and bagged for analysis. All collected water and sediment samples were immediately placed and stored in clean, dry coolers.

11.1.1.4 QP Site Visit Sampling

Two types of samples were collected from two separate sampling locations during the site visit completed by Mr. Mills. Of these two sampling locations, the following was collected:

- TM21-01 Sample Location
 - 5 clay/soil sediment samples from each hand dug pit starting at 0.813 m (2.67 ft) to a depth of 1.473 m (4.83 ft). Samples were collected approximately every 15 cm (6 in) to determine Li concentration variability with respect to depth.
 - Samples were collected and placed in a sealed sterilized glass jar provided by WETLabs.
 - 3 water samples were collected from infiltrated brines and were collected over 3 hours to determine Li concentration variability with respect to time.
 - Approximately 250 ml of unfiltered samples acidified with nitric acid were collected.
- TM21-02 Sample Location
 - 5 clay/soil sediment samples from each hand dug pit starting at 0.813 m (2.67 ft) to a depth of 1.651 m (5.417 ft). Samples were collected approximately every 15 cm (6 in) to determine Li concentration variability with respect to depth.
 - Samples were collected and placed in a sealed sterilized glass jar provided by WETLabs.

- 3 water samples were collected from infiltrated brines and were collected over 3 hours to determine Li concentration variability with respect to time.
 - Approximately 250 ml of unfiltered samples acidified with nitric acid were collected.

All collected water and soil samples were photographed, time stamped, and immediately placed and stored in a clean cooler with ice to ensure sample stabilization.

11.2 SAMPLE SECURITY

All groundwater and sediment samples were kept in the secured possession of managerial staff between their collection in the field and delivery to the laboratories. During the first round of auger drilling, "all samples were transported to the contractor supervisor's (Tom Evans) home and stored in a secure location out of the weather until they could be personally transported to Reno to the ALS Minerals facility" (Evans, 2015). Tom Evans is a California-registered professional geologist. During the second round of auger drilling, samples were kept in secured possession of Ken Tullar (CPG) of Pediment Gold LLC, transported to Reno, and transferred to Mark Coolbaugh, who kept them in locked possession until transfer to laboratories in Reno, NV. During the Geoprobe drilling program, groundwater and sediment samples were collected in the field by Ken Tullar and were transported by him from the field to the ALS Global Laboratory in Reno, NV. To date, all significant lithium groundwater results have been verified by two separate auger sampling campaigns conducted by two different groups. During the site visit completed by Mr. Mills, all samples were taken then immediately stored in a clean dry cooler and in locked possession until delivery to WETLabs in Sparks, NV.

11.3 LABORATORY SAMPLE PREPARATION AND ANALYSIS

All analyses of cations in groundwater at Teels Marsh for Dajin (now HeliosX) were by ICP-AES (induced coupled plasma-atomic emission spectroscopy). ICP-AES is approved for analysis of lithium, boron, and potassium, and certain other metals by the EPA (e.g., EPA method 200.7), and it was the preferred analytical method of all the labs listed below for working with brine solutions.

Samples analyzed by ICP-AES were acidified with nitric acid (Thermochem), aqua regia (WetLabs), conditionally acidified with aqua regia if visible solids were present (Thermochem), or not acidified at all (ALS). Filtering was not employed in the labs, except at Thermochem if visible solids were still present in solution after acidification, or unless specifically requested by Dajin (now HeliosX).

Analysis of sediment composition and groundwater anions was done using standard analytical procedures in use at the laboratories. For lithium in auger sediments, analytical techniques included four-acid digestion ICP-MS (induced coupled plasma-mass spectrometry), four-acid digestion ICP-AES, and Na₂O₂ fusion with ICP-AES finish. Each of these digestions can be considered near-total to total. For the Geoprobe sediment samples, lithium and boron were analyzed using nitric acid-hydrogen peroxide-hydrochloric acid digestion, followed by ICP-AES.

Brine samples collected during Mr. Mills' site visit were analyzed by WETLabs using ICP-AES (EPA 200.7 laboratory code). Brine samples underwent filtration at the lab prior to being analyzed. Clay samples were analyzed by code EPA 6010.

11.4 QUALITY ASSURANCE AND QUALITY CONTROL (QA/QC)

Most of the analyses were completed by four laboratories:

- ALS Minerals at 4977 Energy Way in Reno, Nevada, 89502
- ALS Minerals at 2103 Dollarton Highway in North Vancouver, BC, V7H 0A7
- ALS Environmental at 8081 Lougheed Highway, Suite 100, Burnaby, BC V5A 1W9
- Western Environmental Testing Laboratory (WETLabs) at 475 East Greg Street, Sparks, NV, 89431

A few repeat water analyses were completed by:

• Thermochem Inc. at 3414 Regional Parkway #A in Santa Rosa, CA, 95403

X-ray diffraction (XRD) analyses were completed by: T

• The Energy & Geoscience Institute at the University of Utah at 423 Wakara Way, Suite 300, Salt Lake City, UT, 84108

All these labs have excellent reputations and are widely recognized in their fields for quality analyses of groundwater, rocks, soils, and geothermal fluids, and they are all independent of the issuer. ALS runs a Quality Management System that follows ISO standards for survey/inspection (ISO 9001:2008) and laboratory analysis (ISO 17025:2005). WETLabs is certified by the Nevada Department of Environmental Protection (NDEP) for analyses that meet the requirements of the federal Clean Water and Safe Drinking Water Acts.

All the laboratories utilized in this study maintain internal quality control systems. To supplement that internal control, Dajin (HeliosX) submitted several external standards, blanks, and duplicate samples. As a further check on quality control and quality assurance (QA/QC), several samples were re-analyzed utilizing different methods or different labs. Details of specific QA/QC procedures for the various campaigns are presented in Coolbaugh and Hickson (2017).

The authors are satisfied that sufficient care was taken at each step of preparation, security, and analysis of the Teels Marsh samples.

12 DATA VERIFICATION

Trevor Mills, P.G., SME-RM, conducted a site visit to the Teels Marsh Property on March 16 through 18, 2021. During this visit, Mr. Mills reviewed property access (Figure 12-1 to Figure 12-3), completed drill pads TM-DH-1 and TM-DH-2 (Figure 12-3), basin characteristics, previous sample sites, and collected a total of 16 samples relevant to this report. Samples were collected from two hand-dug pits in the northwest portion of the Property near the highest previously reported sample locations (Figure 12-4; Figure 12-5). These pits were dug to a depth of approximately 1.67 m (5.5 ft). Five surface sediment samples were collected from each pit (Table 12-1) all below 0.813 m (2.67 ft), along with 3 brine samples from each pit (Table 12-2). Clay samples collected at various depths to determine geochemical variability with depth, and brine samples were collected over a timed averaged to evaluate the concentration variability with respect to time.

Figure 12-1 Teels Marsh Looking West to Constructed Drill Pad Claim Post Corner of 72/73/108/109 in Foreground

Sample ID	Easting (UTM WGS 84)	Northing (UTM WGS 84)	Zone	Date	Sample Type	Collection Depth (cm)	Collection Depth (in)	Collection Time	Description
TM21- 01A	378619.648	4229923.52	11S	17-Mar- 21	Soil	81.28	32	0915 HRS	Brown; sandy silty clay
TM21- 01B	378619.648	4229923.52	11S	17-Mar- 21	Soil	91.44	36	0920 HRS	Gray; silty clay
TM21- 01C	378619.648	4229923.52	11S	17-Mar- 21	Soil	116.84	46	0932 HRS	Gray-Brown; sandy silty clay
TM21- 01D	378619.648	4229923.52	11S	17-Mar- 21	Soil	132.08	52	0940 HRS	Gray-Brown; sandy silty clay
TM21- 01E	378619.648	4229923.52	11S	17-Mar- 21	Soil	142.24	58	0950 HRS	Dark Grey; silty clay
TM21- 02A	378565.794	4229923.771	11S	17-Mar- 21	Soil	91.44	36	1200 HRS	Brown; silty clay
TM21- 02B	378565.794	4229923.771	11S	17-Mar- 21	Soil	116.84	46	1202 HRS	Brown; silty sandy clay
TM21- 02C	378565.794	4229923.771	11S	17-Mar- 21	Soil	132.08	52	1205 HRS	Brown; silty sandy clay
TM21- 02D	378565.794	4229923.771	11S	17-Mar- 21	Soil	152.4	60	1220 HRS	Brown-Gray- Green; sandy clay
TM21- 02E	378565.794	4229923.771	11S	17-Mar- 21	Soil	165.1	65	1222 HRS	Light Gray; sandy clay

Table 12-1Clay Samples Collected from the Property on March 17, 2021

Table 12-2Brine Samples collected from the Property on March 17, 2021

Sample ID	Easting (UTM WGS 84)	Northing (UTM WGS 84)	Zone	Date	Sample Type	Collection Depth (cm)	Collection Depth (in)	Collection Time	Description
TM21- 01F	378619.648	4229923.52	11S	17-Mar- 21	Brine	142.24	58	1300 HRS	Pit 1; Brine Sample 1
TM21- 01G	378619.648	4229923.52	11S	17-Mar- 21	Brine	152.4	60	1400 HRS	Pit 1; Brine Sample 2
TM21- 01H	378619.648	4229923.52	11S	17-Mar- 21	Brine	152.4	60	1515 HRS	Pit 1; Brine Sample 3
TM21- 02F	378565.794	4229923.771	11S	17-Mar- 21	Brine	165.1	65	1256 HRS	Pit 2; Brine Sample 1
TM21- 02G	378565.794	4229923.771	11S	17-Mar- 21	Brine	165.1	65	1356 HRS	Pit 2; Brine Sample 2
TM21- 02H	378565.794	4229923.771	11S	17-Mar- 21	Brine	165.1	65	1456 HRS	Pit 2; Brine Sample 3

Figure 12-2 Teels Marsh and Marietta Wild Burro Range

Figure 12-3 Drill Pad TM-DH-01 The sample results collected by Mr. Mills are presented in

Table 12-3 and Table 12-4 below. All samples remained in his secure possession until they were submitted to Western Environmental Testing Laboratory (WETLAB an EPA NV00925 accredited lab) located in Sparks, Nevada on March 19, 2021. The soil samples were prepared by method EPA 3050B (Trace Metals Digestion) and analyzed by method SW846 6010B (Trace Metals ICP-OES). The brine samples were prepared by method EPA 200.2 (Trace Metals Digestion (Brine)) and analyzed by method EPA 200.7 (Trace Metals ICP-OES). The laboratory inserted 3 blanks and 3 standards for quality control. The soil samples confirmed the presence of lithium within the basin, and there is a correlation of increasing lithium presence with respect to depth. Brine samples collected from both sample pits, returned slightly higher lithium concentrations as compared to the brine sample collected in September of 2020. It is worth noting that lithium values from sample pit TM21-01 increased with time, resulting in a max Li concentration value of 77.3 mg/L and 274 mg/L boron. There was no significant change in both Li and B concentrations with respect to time in sample pit TM21-02. The soil and brine samples collected by Mr. Mills during the site visit confirmed the presence of lithium within the basin, and validate samples previously collected on the Property.

Sample ID	Date	Sample Type	Collection Depth (cm)	Collection Depth (in)	Collection Time (hours)	Li (ppm)	B (ppm)	Na (%)	Ca (%)	Mg (%)	K (%)
			(cm)	(m)	(nours)	(իհայ	(ppm)	(70)	(70)	(70)	(70)
TM21- 01A	17- Mar-21	Soil	81.28	32	0915 HRS	180	1000	2.50	0.65	0.28	0.8
TM21- 01B	17- Mar-21	Soil	91.44	36	0920 HRS	260	2400	2.80	1.10	0.38	0.83
TM21- 01C	17- Mar-21	Soil	116.84	46	0932 HRS	220	740	2.50	1.10	0.55	1.1
TM21- 01D	17- Mar-21	Soil	132.08	52	0940 HRS	300	480	3.10	0.81	0.70	1.6
TM21- 01E	17- Mar-21	Soil	142.24	58	0950 HRS	350	540	3.00	0.96	0.77	1.8
TM21- 02A	17- Mar-21	Soil	91.44	36	1200 HRS	210	1300	2.40	1.00	0.51	1
TM21- 02B	17- Mar-21	Soil	116.84	46	1202 HRS	200	380	2.40	0.84	0.5	1.4
TM21- 02C	17- Mar-21	Soil	132.08	52	1205 HRS	160	310	2.60	0.80	0.57	1.4
TM21- 02D	17- Mar-21	Soil	152.4	60	1220 HRS	260	720	3.40	0.81	0.71	1.6
TM21- 02E	17- Mar-21	Soil	165.1	65	1222 HRS	280	830	3.70	0.61	0.67	1.6

Table 12-3Analytical Results of Site Visit Verification Clay Samples

				•							
Sample ID	Date	Sample Type	Collection Depth (cm)	Collection Depth (in)	Collection Time (hours)	Li (mg/L)	B (mg/L)	Na (mg/L)	Ca (mg/L)	Mg (mg/L)	K (mg/L)
TM21- 01F	17- Mar-21	Brine	142.24	58	1300 HRS	74.9	267	52700	10.2	<10	1670
TM21- 01G	17- Mar-21	Brine	152.4	60	1400 HRS	76.0	264	53700	120	42.6	1800
TM21- 01H	17- Mar-21	Brine	152.4	60	1515 HRS	77.3	274	53800	29.1	15.4	1780
TM21- 02F	17- Mar-21	Brine	165.1	65	1256 HRS	72.7	281	53000	<10	<10	2130
TM21- 02G	17- Mar-21	Brine	165.1	65	1356 HRS	73.2	282	56000	<10	<10	2090
TM21- 02H	17- Mar-21	Brine	165.1	65	1456 HRS	72.0	275	54800	<10	<10	2090

 Table 12-4
 Analytical Results of Site Visit Verification Brine Samples

Figure 12-4 Site Visit Sample Pit TM21-02 – oblique and plan view

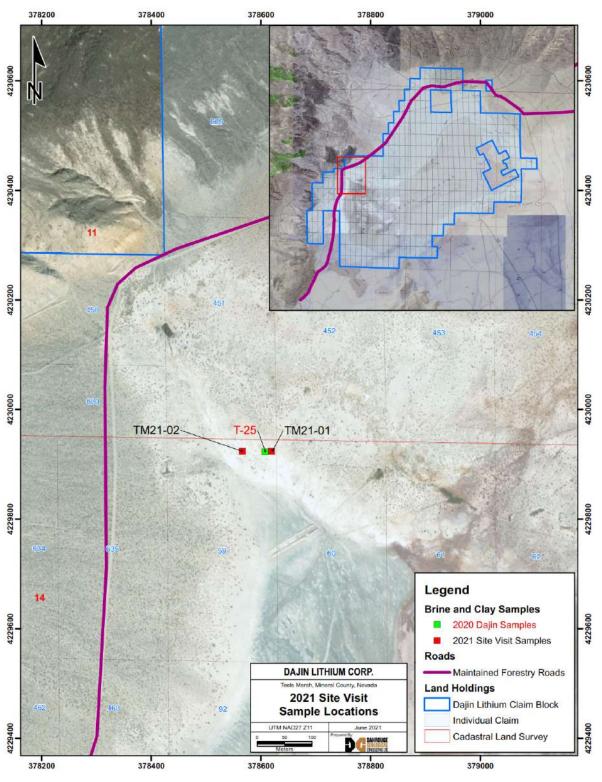


Figure 12-5 2021 Site Visit Sample Locations

13 MINERAL PROCESSING AND METALLURGICAL TESTING

No mineral processing or metallurgical testing has been completed on the Property as it is at an early stage of exploration. Conventional processing for lithium brines at Clayton Valley, and at the Atacama Salar in Chile, and the Salar de Uyuni in Bolivia, for example, uses solar evaporation to concentrate lithium brines before processing to lithium carbonate. This requires significant water consumption for which HeliosX (formerlyDajin) has obtained water rights (see Section 4.4.1).

Several alternative methods of processing lithium brines using ion exchange and electrochemical extraction are in testing or pilot plant stages around the world, in efforts to find faster, more efficient recovery of lithium brines with reduced consumption of water. These will likely have additional power requirements to conventional evaporative processing, which could be provided by provided by solar or geothermal energy. At this stage, no processing methods have been chosen.

HeliosX (formerly Dajin) has been in discussion with Moselle Technologies LLC. ("Moselle") regarding their nanoparticle extraction process. This process involves creation of approximately 150 nm ion exchange beads surrounding a tiny crystal of magnetite. These sorbent beads are added directly to lithium brine and agitated. The slurry is then passed through a magnetic field to extract the nanoparticle beads with adsorbed lithium. After treatment with release agents, the sorbent beads can be recycled in the process stream. This process has been successfully tested at bench scale with recoveries approaching 100% (Liu et al., 2021) at Pacific Northwest National Laboratory (PNNL) in Richland, Washington. The process is selective for lithium and reduces water and power consumption, as well as vessel size, from that of conventional ion exchange systems. Pilot testing of the process would be undertaken using lithium brines produced from planned exploration drilling at Teels Marsh should they prove suitable. PNNL and Moselle are working on two projects awarded by the US Department of Energy for further development of Moselle's magnetic nanoparticle lithium extraction technology.

Characterization of a viable processing methodology at Teels Marsh will require suitable concentrations of lithium in groundwater from deep drilling, at which time process testing can begin.

14 MINERAL RESOURCE ESTIMATES

No NI 43-101-compliant mineral resource estimation has been completed on the Property.

15 TO **22** – NOT APPLICABLE (EARLY-STAGE PROJECT)

The Teels Marsh Property is an early-stage exploration project. Sections 15 through 22, as defined by NI 43-101 are not relevant to this report and have been omitted.

23 Adjacent Properties

Adjacent properties to the Teels Marsh Property include patented mining claims owned by U.S. Borax Inc., unpatented placer claims controlled by Fuse Cobalt Inc. as well as lode claims and a few other private lands (Figure 4-2). The U.S. Borax lands are the only mining claims within the playa that are not controlled by, or under lease with, HeliosX. They were originally staked for borate mining in the 1800s and have been held by U.S. Borax and its predecessors ever since. These claims occur along the eastern margin of the playa, but they do cover a portion of subsurface lithium brine targets. HeliosX (formerly Dajin) has a surface access and data sharing agreement with U.S. Borax.

Fuse Cobalt Inc. controls 100 unpatented placer claims in the southwest corner of Teels Marsh. These claims cover the near-surface expression of a geothermal system, whose fluids could be contributing lithium to Teels Marsh, but the claims lie outside the playa itself, and largely outside of the deeper basin beneath Teels Marsh. These claims are contiguous with the Property (Figure 4-2).

HeliosX holds a geothermal lease covering part of the Property which it acquired from Geothermal Development Associates of Reno, Nevada (Figure 4-2). This lease is good until 2024. Geothermal leases covering the western portion of the Teels Marsh playa and extending further to the west, north, and south were dropped. A discussion of those leases is provided in section 4.4.

MSM Resource LLC and Olinghouse Apex LLC of Reno, Nevada, hold a small group of lode claims immediately abutting the west side of HeliosX's Property. Sierra Nevada Gold USA Inc., also of Reno, Nevada, holds a large group of lode claims north of the HeliosX Property, covering historical silver/lead prospects and workings of the Marietta camp (see Section 6; Figure 4-2).

Great Western Mining Corporation PLC (Ireland) owns lode claims along the ridge west of Teels Marsh (Figure 4-2) which is part of the Excelsior Range. This Black Mountain claim group covers historic showings and workings for gold, copper, and silver.

24 OTHER RELEVANT DATA AND INFORMATION

The authors are unaware of any other relevant data or information for the Teels Marsh Property.

25 INTERPRETATION AND CONCLUSIONS

The Teels Marsh Property is considered by the authors to be a property of merit. Several factors support the potential for lithium brines below Teels Marsh, although to date, only surface and near-surface exploration has been conducted on the Property. These include:

- Deep sediment-filled basin (up to 2.5 km based on seismic interpretation).
- Potential lithium source rocks in the Candelaria Hills tuff sequence, and Bishop Tuff.
- Volcanic eruptive centres at the Long Valley and Mono craters southwest of Teels Marsh which may have deposited tephra layers similar to those found as aquifers at Clayton Valley.
- Significant evidence of geothermal activity including thermal springs and travertine to the south, and test wells showing shallow hot water to the northwest and southwest of the property up to 97° C (207° F) at 40 m (131 ft) depth.
- Borate deposits in the eastern part of the playa.
- Desert climate with similar conditions and evaporative rates to Clayton Valley.

Lithium in near-surface brines (within 3 m) at concentrations above 79 mg/L have not been demonstrated so far at Teels Marsh, but it must be noted that at Clayton Valley, economic lithium concentrations in brines were only demonstrated by drilling (Davis et al., 1986). This is likely due to the higher relative density of saline brines and surface dilution from runoff.

Coolbaugh and Hickson (2017) note that concentrations of lithium in brines can develop relatively quickly due to natural solar evaporation processes, provided that groundwater and/or surface water entering the playa has suitably high lithium to total salt ratios, and a sufficiently large mass flux of lithium, as at the Qaidam Basin, China (Yu et al., 2013). It is possible that lithium brines could have formed during an earlier period at Teels Marsh when conditions were more favourable and then then settled into the deeper basin due to higher density.

In the northwest corner of the playa, elevated lithium concentrations in brines appear to be related to the incursion of geothermal fluids into the basin. Based on gravity and seismic surveys, the basin appears to be up to 2.5 km deep. This provides a large volume within which lithium brines could collect. No deep lithium exploration drilling is known at Teels Marsh beyond 61 m (200 ft). The authors conclude that lithium brines could be present in the subsurface at Teels Marsh, and that the next step is exploration drilling to evaluate that potential.

Although limited exploration at shallow depths of the geothermal potential in the Teels Marsh basin has been conducted thus far (see Section 6.4), those results are encouraging. Geoprobe drilling encountered temperatures of up to 97°C (207° F)at 40 m (131 ft) depth northwest of the marsh (site "A", Figure 6-1), and 78°C (178° F) at 30 m (98 ft) depth southwest of the marsh (site "B", Figure 6-1). Deeper drilling as part of lithium brine exploration may reveal commercial geothermal

potential which could be developed in parallel. This could provide operational power for lithium processing and possibly surplus power as a byproduct and should be part of HeliosX's exploration strategy.

Possible future options may exist for carbon capture joint venture initiatives, given potential depths of wells in brine exploration. This is an ongoing consideration which can be explored.

It must be stated that, at this point, there is no certainty that lithium is present in economic concentrations beneath Teels Marsh, or that it can be extracted economically. Uncertainties that must be considered include:

- Sufficient concentration of lithium in subsurface brines.
- Suitable aquifers with transmissivities permitting effective pumping and extraction of brines.
- Development of a chemical refinement process suitable for producing a purified lithium product.
- Availability of sufficient water and power to sustain a chemical extraction plant.
- The ability to obtain necessary permits and address any environmental concerns that may arise during exploration and development.

The authors are of the opinion that, given the generally similar geological conditions and proximity of both Teels Marsh and Clayton Valley, where lithium has been economically extracted from brines since 1966, exploration for lithium brines at Teels Marsh is warranted. With the information available as of the preparation of this report, no engineering, environmental, or regulatory impediments are apparent which would prevent exploration and development. Nevada has demonstrated a consistently supportive attitude to mining development which provides projected long-term stability.

26 Recommendations

Construction of access and drill pads as recommended by Coolbaugh and Hickson (2017) was completed in 2018 and was verified to be in good condition by Mr. Mills site visit in March 2021 (Figure 9-1).

The authors recommend a two-phase exploration plan. Phase 1 would consist initially of two large diameter (7") drill holes, one at each pad drilled to about 150 m (500 ft) (Locations TM-DH-1S and - 2 S (Figure 9-1)). These holes would test the upper units of the playa. Once those were tested, a second deeper well (Locations TM-DH-1D and-2D) of up to 1,000 m at each pad can be drilled, as the conditions in the upper 150 m, which generally are more difficult, would be better known. An important aquifer target is the Bishop Tuff ("main ash aquifer" at Clayton Valley) which could be excess of 650 m at TM-DH-2S. The hole at TM-DH-1S could potentially be shallower, as the western sub-basin is about half the depth of the central sub-basin (Coolbaugh and Hickson, 2017). Thus, a cumulative drilling metrage of 2300 m (7,550 ft) should be sufficient for Phase 1.

Phase 2 would be contingent upon the successful conclusion of Phase 1. The program would consist of two additional holes on each existing pad with graduated depths of 1,500 m to 2,000 m each for an additional metrage of up to 7,000 m (23,000 ft) if favourable results justify (Table 26-1).

A 14-day flow test is recommended for testing potential aquifers in each hole. Such a flow test could discharge more than 15 million litres (4 million US gallons or 12.37 acre-feet) of water. This volume of water will exceed the storage capacity of sumps, so a temporary discharge permit from the NDEP will be required if the flow rate exceeds 250 gpm (US) and/or the duration of pumping exceeds 48 hrs.

Appropriate sampling equipment should be assembled and tested prior to drilling to ensure highquality brine samples can be taken in the field. Temperatures, thermal conductivities, and pH of formational waters should be measured in the field. A sampling protocol needs to include description of cleaning procedures, filtering, and fluid stabilization (acidification and cooling) procedures, use of standard and blank samples, and a chain of custody.

Arrangements with a laboratory need to be made prior to drilling to make sure samples can be received and processed in a timely manner and that appropriate sample preparation and analytical procedures are used. It is suggested that lithium concentrations be measured by ICP-AES by a recognized laboratory experienced with analyzing lithium and other solutes in high-salinity brines.

Notice of Intent was approved in a letter issued March 21, 2017 (and amended March 12, 2019) with reference number NVN-94695 3809 (NVC0100) provides access to BLM lands for exploration. This notice has been extended to July 27, 2023.

Proof of Completion (POC) and Proof of Beneficial Use (PBU) extensions, under NDWR permit # 85204, were filed on June 8, 2021, for a further three years and have been granted to May 24, 2024. The revised bond requirement of \$176,719 (USD) dated April 2, 2019, has been paid. Review of the reclamation estimate as part of application for renewal of the Notice granted by the BLM on July 27,

2021, includes a revised reclamation cost estimation (RCE) of \$209,801. The balance of \$ 33,082 (USD) has been paid.

HeliosX (formerly Dajin) has been in discussion previously with NDEP and BLM representatives regarding change permits for temporary discharge from the proposed exploration wells and has obtained them in the past. Water quality testing will likely be required prior to issuance of the permit. To date HeliosX has encountered no issues with its proposed water use plans.

In addition to the lithium exploration wells, a water well is needed to provide a clean source of water for drilling activities. An abandoned well at Marietta was investigated and has proved adequate to date, but a water alternative water well site has been included in the Notice should the existing well prove inadequate (TM-WW-1: Figure 9-1).

Drill Permitting, Surface Program, and Phase 1 Drillin	g Prog	gram
Activity / Task Item	(Cost (CDN)
Permitting and Environmental	\$	200,000
Additional Geophysical (HD Seismic and gravity)	\$	180,000
Field Staffing	\$	100,000
Field Expenditures (housing, travel, equipment, and expenses)	\$	20,000
Drilling Services (Large diameter holes – 2,300m @ \$1,000/m)	\$	2,300,000
Analytical	\$	200,000
Contingency (15%)	\$	450,500
Total	\$	3,450,500

Table 26-1Proposed Budget for Teels Marsh Exploration

Phase 2 Drilling Budget Proposal		
Activity / Task Item	(Cost (CDN)
Field Staffing	\$	250,000
Field Expenditures (housing, travel, equipment, and expenses)	\$	50,000
Drilling Services (Large diameter holes – 7,000m @ \$1,000/m)	\$	7,000,000
Analytical	\$	500,000
Contingency (15%)	\$	1,200,000
Total	\$	8,000,000

27 References

- Coolbaugh, M.F., and Hickson, C.J., 2017: NI 43-101 Technical Report on the Teels Marsh Property, Mineral County, Nevada, USA: SEDAR, 89p.
- Davis, J.R., Friedman, I., and Gleason, J.D., 1986: **Origin of the lithium-rich brine, Clayton Valley, Nevada:** U.S. Geological Survey Bulletin 1622, 138 p.
- Ames, L.L., Sand, L.B. Jr., and Goldich, S.S., 1958: **A contribution on the Hector, California bentonite deposit**: Economic Geology, v. 53, p. 22-37.
- Bennett, R.A., Wernicke, B.P., and Davis, J.L., 1998: **Continuous GPS measurements of contemporary deformation across the northern Basin and Range province**: Geophysical Research Letters, v. 25, p. 563-566.
- Bohannon, R.G. and Meier, A.L., 1976: Lithium in sediments and rocks in Nevada: U.S. Geological Survey Open-File Report 76-567, 17 p.
- Bradley, D., Munk, L., Jochens, H., Hynek, S., and Labay, K., 2013: **A preliminary deposit model for lithium brines:** U.S. Geological Survey Open-File Report 2013-1006, 6 p.
- Brioche, A., 2021: Boron Production: USGS National Minerals Information Center, 2p.
- Coolbaugh, M.F., 2016: **Preliminary structural model, Teels Marsh, Mineral County, NV**: Internal report prepared for Dajin Resources (US) Corp., Jan. 18, 2016, 14 p.
- Coolbaugh, M.F. and Faulds, J.E., 2016: **Interpretation of the seismic reflection survey at Teels Marsh, Mineral County:** Nevada: internal report prepared for Dajin Resources (US) Corp., Oct. 31, 2016, 15 p.
- Coolbaugh, M.F., Kratt, C., Sladek, C., Zehner, R.E., and Shevenell, L., 2006: **Quaternary borate deposits as a geothermal exploration tool in the Great Basin:** Geothermal Resources Council Transactions, v. 30, p. 393-398.
- Coolbaugh, M., Kratt, C., Faulds, J., Zehner, R., and Sladek, C., 2013: Active geothermal systems of the Mina Deflection, southwestern Nevada: *in* L.J. Garside, ed., Geothermal and Petroleum Developments in Several Extensional Basins of the Central Walker Lane, Nevada: 2013 Nevada Petroleum and Geothermal Society Field Trip Guidebook, Oct. 12-13, 2013, p. 101-116.
- Crafford, A.E.J., 2007: **Geologic Map of Nevada**: U.S. Geological Survey Data Series 249: 1 CD-ROM, 46 p., 1 plate.
- Crowley, J.K., 1991: **Spectral reflectance analysis of playa evaporite minerals potential for use in playa geochemical studies and mineral resource exploration**: *in* Raines, G.L., Lisle, R.E., Schafer, R.W., and Wilkinson, W.H., eds., Geology and ore deposits of the Great

Basin, symposium proceedings, Great Basin Symposium, April 1990: Reno, Nevada, Geological Society of Nevada, p. 255-262.

- Dajin-HeliosX, 2022a: **Dajin Lithium Corp. and HeliosX Technologies Corp. announce completion of Plan of Arrangement,** January 13, 2022, news release.
- Dajin-HeliosX, 2022b: HeliosX Technologies Corp. (formerly Dajin Lithium Corp.) announces name change to HeliosX Lithium & Technologies Corp., January 28, 2022 news release.
- Davis, J.R., Friedman, I., and Gleason, J.D., 1986: **Origin of the lithium-rich brine, Clayton Valley, Nevada:** U.S. Geological Survey Bulletin 1622, 138 p.
- Drew, P., 1970, Geochemistry of Iron and Clay Mineralogy of Playa Sediments from Teels Marsh, Nevada: University of Wisconsin, M.Sc. Thesis, 69 p.
- Eggleston, T. and Hertel, M., 2008: **NI 43-101 Technical Report, Kings Valley lithium, Nevada**: USA: prepared for Western Lithium Corp. by AMEC E&C Services Inc. (AMEC), project 160237, Dec. 15., 2008, 100 p.
- Evans, T.L. Jr., 2015: Sediment and brine auger sampling at Teels Marsh playa, Mineral County, Nevada: report prepared for Dajin Resources Corp. June 22, 2015, 5 p.
- Everts, C.H., 1969, The Evolution of Playa Waters, Teels Marsh, Mineral County, Nevada: University of Wisconsin M.Sc. Thesis, 105 p.
- Faulds, J.E., and Henry, C.D., 2008: Tectonic influences on the spatial and temporal evolution of the Walker Lane: An incipient transform fault along the evolving Pacific – North American plate boundary: *in* Spencer, J.E., and Titley, S.R., eds., Circum-Pacific Tectonics, Geologic Evolution, and Ore Deposits: Tucson, Arizona Geological Society, Digest 22, p. 437-470.
- Faulds, J.E. and Hinz, N.H., 2015: Favorable Tectonic and Structural Settings of Geothermal Systems in the Great Basin Region, Western USA: Proxies for Discovering Blind Geothermal Systems: Transactions, World Geothermal Conference 2015, Melbourne, Australia, 19-25 April 2015.
- Ferranti, L., Oldow, J.S., Geissman, J.W., and Nell, M.M., 2009: Flattening strain during coordinated slip on a curved fault array, Rhodes Salt Marsh extensional basin, central Walker
 Lane, west-central Nevada: *in* Oldow, J.S., and Cashman, P.H., eds., Late Cenozoic Structure and Evolution of the Great Basin–Sierra Nevada Transition: Geological Society of America Special Paper 447, p. 189–213.
- Garside, L.L., 1994: **Nevada Low-Temperature Geothermal resource Assessment: 1994:** Nevada Bureau of mines and Geology, Final Report, 104p.
- Hay, R.L., 1964: Phillipsite of saline lakes and soils: American Mineralogist, v. 49, p. 1366-1387.

- Henry, C.D. and John, D.A., 2014: Magmatism, ash-flow tuffs, and calderas of the ignimbrite flareup in the western Nevada volcanic field, Great Basin, USA: Geosphere, v. 9, p. 951-1008.
- Hickson, C.J., and Coolbaugh, M.F, 2017: **Do Geothermal Systems Play a Role in Lithium Brine Enrichment in Nevada Playas?** GRC Transactions, Vol. 41, 16p.
- Hofstra, A.H., Todorov, T.I., Mercer, C.N., Adams, D.T., and Marsh, E.E., 2013: Silicate melt inclusion evidence for extreme pre-eruptive enrichment and post-eruptive depletion of lithium in silicic volcanic rocks of the western United States: implications for the origin of lithium-rich brines: Economic Geology, v. 108, p. 1691-1701.
- Houston, J., Butcher, A., Ehren, P., Evans, K., and Godfrey, L., 2011: **The evaluation of brine prospects and the requirement for modifications to filing standards**: Economic Geology, v. 106, p. 1225-1239.
- Jochens, H. and Munk, L., (2011): Experimental weathering of lithium-bearing source rocks Clayton Valley, Nevada, USA. : Proceedings, 11th SGA Biennial Meeting, 3p.
- Jones, C.G., Carlson, C.T., and Moore, J.N., 2015: X-ray diffraction analyses of 15 sediment core samples from Teels Marsh, NV: Energy and Geoscience Institute report for Dajin Resources, October, 2015, 22 p.
- Ker, P., 2021: Super solar plant for Rio Tinto's Californian mine: Financial Review (<u>https://www.afr.com/companies/energy/super-solar-plant-for-rio-tinto-s-californian-mine-20210324-p57dlt</u>)
- Kesler, S.E., Gruber, P.W., Medina, P.A., Keoleian, G.A., Everson, M.P., and Wallington, T.J., 2012:
 Global lithium resources: relative importance of pegmatite, brine and other deposits: Ore Geology Reviews, v. 48, p. 55-69.
- Kratt, C., Coolbaugh, M., and Calvin, W., 2006: Remote detection of Quaternary borate deposits with ASTER satellite imagery as a geothermal exploration tool: Geothermal Resources Council Transactions, v. 30, p. 435-439.
- Kratt, C., Coolbaugh, M., Sladek, C., Zehner, R., Penfield, R., and Delwiche, B., 2008: A new gold pan for the west: discovering blind geothermal systems with shallow temperature surveys: Geothermal Resources Council Transactions, v. 32, p. 153-158.
- Liu, J., Martin, P.F., and McGrail, B.P., 2021: Rare-Earth Element Extraction from Geothermal Brine Using Magnetic Core-Shell Nanoparticles-Techno-Economic Analysis: Geothermics, v. 89.
- Macdonald, R., Smith, R.L., and Thomas, J.E., 1992: **Chemistry of the subalkalic silicic obsidians**: U.S. Geological Survey Professional Paper 1523, 214 p.

- Magee Geophysical Services LLC, 2015: **Gravity survey over the Teels Marsh Prospect, Mineral County, NV**: report submitted to Dajin Resources (US) Corp., March, 2015, 4 p.
- Munk, L., Hynek, S., Boutt, D., and Bradley, D., 2015,: Geology, geochemistry, and hydrogeology of lithium brines: *in* Pennell, W.M. and Garside, L.J., eds., New Concepts and Discoveries, 2015
 GSN Symposium: Geological Society of Nevada Symposium Proceedings, Reno, Nevada, May 14-23, 2015, p. 515-519.
- Munk, Lee & Bradley, Dwight & Hynek, S. & Chamberlain, Charles. (2011): **Origin and Evolution of** Li-rich Brines at Clayton Valley, Nevada, USA: AGU Fall Meeting Abstracts. 2602-.
- Oldow, J.S., Geissman, J.W., and Stockli, D.F., 2008: **Evolution and strain reorganization within** Late Neogene structural stopovers linking the central Walker Lane and northern Eastern California Shear Zone, western Great Basin: International Geology Review, v. 50, p. 270-290.
- Osvald, M., Kilpatrick, A., Rochelle, C.A., Szanyi, J., Raucsik, B., Medgyes, T., and Kobor, B., 2020: Laboratory investigations of the physical parameters influencing the *in situ* leaching of tungsten: Geothermics, Vol 89.
- Papke, K.G., 1976: **Evaporites and brines in Nevada playas** Nevada Bureau of Mines and Geology Bulletin 87, 35 p.
- Price, J.G., Lechler, P.J., Lear, M.B., and Giles, T.F., 2000: Possible volcanic source of lithium in brines in Clayton Valley, Nevada: *in* Cluer, J.K., Price, J.G., Struhsacker, E.M., Hardyman, R.F., and Morris, C.L., eds., Geology and Ore Deposits 2000: The Great Basin and Beyond: Geological Society of Nevada Symposium Proceedings, Reno, Nevada, May 15-18, 2000, p. 241–248.
- Robinson, P.T., and Stewart, J.H., 1984: **Uppermost Oligocene and lowermost Miocene ash-flow tuffs of western Nevada:** U.S. Geological Survey Bulletin 1557, 53 p.
- Schacht, B., 2001: **Final report on data acquisition and processing for the airborne magnetic survey of the Excelsior Mountains and South Wassuk Range of western Nevada** on behalf of the United States Geological Survey; March 2001, 7 p.
- Schwinkendorf, J., 2016: Data processing report, 2D seismic reflection survey, Teels Marsh,
 Mineral County, Nevada: Internal Report prepared for Dajin Resources, Corp. by Columbia
 Geophysical, LLC, September 28, 2016, 4 p.
- Smith, C.L., 1974: Chemical controls on weathering and trace metal distribution at Teels Marsh, Nevada; Ph. D. Dissertation, University of Wyoming, 98 p.
- Smith, C.L. and Drever, J.I., 1976: **Controls on the chemistry of springs at Teels Marsh, Mineral County, Nevada:** Geochimica et Cosmochimica Acta, v. 40, p. 1081-1093.

- Spanjers, R.P., 2015: Inferred resource estimate for lithium, Clayton Valley South Project, Clayton Valley, Esmeralda County, Nevada, USA: Technical Report for NI 43-101: Prepared on behalf of Pure Energy Minerals, Ltd., July 17, 2015.
- Stewart, J.H., 1980: Geology of Nevada: Nevada Bureau of Mines and Geology Special Publication 4: 136 p.
- Stewart, J.H., 1984: Geologic map of the Teels Marsh quadrangle, Mineral County, Nevada: U.S. Geological Survey Open-File Report OF-84-504.
- Stewart, J.H., Kleinhampl, F.J., and Johannesen, D.C., 1984a: **Geologic map of the Rattlesnake Flat quadrangle, Mineral County, Nevada**: U.S. Geological Survey Open-File Report OF-84-506.
- Stewart, J.H., Kleinhampl, F.J., Speed, R.C., and Johannesen, D.C., 1984b: **Geologic map of the Little Huntoon Valley quadrangle, Mineral County, Nevada:** U.S. Geological Survey Open-File Report OF-84-503.
- Taylor, M.W. and Surdam, R.C., 1981: **Zeolite reactions in the tuffaceous sediments at Teels Marsh, Nevada:** Clays and Clay Minerals, v. 29, n. 5, p. 341-352.
- Van Denburgh, A.S. and Glancy, P.A., 1970: Water-resources appraisal of the Columbus Salt
 Marsh Soda Spring Valley area, Mineral and Esmeralda Counties, Nevada: Nevada
 Department of Conservation and Natural Resources Report, Water Resources Reconnaissance Series Report 52, 66 p.
- Vine, J.D., Ed., 1976: Lithium Resources and Requirements by the Year 2000: U.S. Geological Survey Professional Paper 1005, 162 p.
- Wesnousky, S.G., 2005: Active faulting in the Walker Lane: Tectonics, v. 24, 35 p.
- Wright, J.L., 2015: **Teels Marsh Property gravity and airborne magnetic surveys basin model and GIS compilation:** ; report submitted to Dajin Resources Corp. March 11, 2015, 29 p.
- Yu, J., Gao, C., Cheng, A., Liu, Y., Zhang, L., and He, X., 2013: Geomorphic, hydroclimatic and hydrothermal controls on the formation of lithium brine deposits in the Qaidam Basin, northern Tibetan Plateau, China: Ore Geology Reviews, v. 50, p. 171-183.
- Zampirro, D., 2004: Hydrogeology of Clayton Valley brine deposits, Esmeralda County,
 Nevada: *in* Castor, S.B., Papke, K.G., and Meeuwig, R.O., eds., Betting on industrial minerals:
 Proceedings of the 39th Forum on the Geology of Industrial Minerals, Reno-Sparks, Nevada,
 May 18-24, 2003; Nevada Bureau of Mines and Geology Special Publication 33, p. 271-280.
- Zehner, R.E., Tullar, K.N., and Rutledge, E., 2012: Effectiveness of 2-meter and Geoprobe shallow temperature surveys in early-stage geothermal exploration: Geothermal Resources Council Transactions, v. 36, p. 835-841.

Zheng, M. and Liu, X., 2009: Hydrochemistry of salt lakes of the Qinghai-Tibet plateau, China:

Aquatic Geochemistry, v. 15, p. 293-320.

28 DATE AND SIGNATURE PAGE

This report, entitled "Technical Report on the Teels Marsh Property" and with an effective date of February 1,2022, was prepared on behalf of HeliosX Lithium & Technologies Corp. (formerly Dajin Lithium Corp.) and is signed by the authors, John Gorham, and Trevor Mills.

John Gorham

P. Geol.

Suite 103, 10183-112 Street, Edmonton, Alberta T5K 1M1, Canada

Trevor Mills

P.G, SME-RM

7000 S. Yosemite St., Suite 115, Centennial, CO, 80112, USA

29 CERTIFICATE OF QUALIFIED PERSONS

I, John Gorham, of # 103, 10183-112 Street, Edmonton, Alberta, T5K 1M1, Canada hereby certify that:

- I, am employed as a Senior Geologist with Dahrouge Geological Consulting Ltd.
- I am an author of the technical report entitled "Technical Report on the Teels Marsh Property", prepared on behalf of HeliosX Lithium & Technologies Corp. (formerly Dajin Lithium Corp.), with an effective date of February 1, 2022.
- I graduated from the University of Calgary, Canada with a B.Sc. degree in Geology in 1976.
- I am a Professional Geoscientist registered in the Province of Alberta, Canada (Member # M46239).
- I have practiced my profession for 45 years since graduation. I have been directly involved in green fields and brown fields exploration, and consulting, with experience in gold, base metals, precious and rare metals lithium and rare earth deposits, coal, industrial and precious gem minerals.
- As a result of my experience and qualifications, I am a Qualified Person as defined in National Instrument 43–101 Standards of Disclosure for Mineral Projects (NI 43–101).
- I did not visit the Teels Marsh Property.
- I am responsible for Sections 1 to 11, and 13 to 27 of this report entitled "**Technical Report** on the Teels Marsh Property", prepared on behalf of HeliosX Lithium & Technologies Corp. (formerly Dajin Lithium Corp.), and with an effective date of February 1, 2022.
- I am independent of the issuer of this report, HeliosX Lithium & Technologies Corp. (formerly Dajin Lithium Corp.),
- I have not had prior involvement with the Property that is the subject of this report.
- I have read National Instrument 43-101 and this report entitled "**Technical Report on the Teels Marsh Property**", has been prepared in compliance with this Instrument.
- As of the effective date of this report, February 1, 2022, to the best of my knowledge, information and belief, the Technical Report contains all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.

'Signed and Sealed"

John Gorham, P. Geol. Dated: August 5, 2021

I, Trevor Mills, of 7000 S. Yosemite St., Suite 115, Centennial, CO, 80112, USA do hereby certify that:

- I am a Professional Geologist and Senior Geologist / US Operations Manager of Dahrouge Geological Consulting USA Ltd.
- I am an author of the technical report **entitled "Technical Report on the Teels Marsh Property"**, prepared on behalf of HeliosX Lithium & Technologies Corp. (formerly Dajin Lithium Corp.), with an effective date of February 1, 2022.
- I graduated with a Bachelor of Arts degree in Geology from the University of Colorado Boulder 2011.
- I am a Professional Geologist (P.G.) with the State of Idaho, registry number PGL-1555, and a Registered Member of the Society of Mining, Metallurgy & Exploration (SME), member number 04195601.
- I have worked as a geologist for approximately 12 years. My experience has been focused on precious and base-metals, rare earth elements and specialty metals exploration and mine pre-development throughout the western United States and Southeast Asia.
- I am a Qualified Person for purposes of National Instrument 43-101 Standards of Disclosure for Mineral Projects (NI 43–101).
- I inspected the Teels Marsh Property between March 16-18, 2021.
- I am responsible for sections 12, 25 and 26 of the report entitled **"Technical Report on the Teels Marsh Property"**, prepared on behalf of HeliosX Lithium & Technologies Corp. (formerly Dajin Lithium Corp.), and with an effective date of February 1, 2022.
- I am independent of the issuer of this report, HeliosX Lithium & Technologies Corp. (formerly Dajin Lithium Corp.),
- I have not had prior involvement with the Property that is the subject of this report.
- I have read National Instrument 43-101 and the report **entitled "Technical Report on the Teels Marsh Property"** has been prepared in compliance with this Instrument.
- As of the effective date of the report, February 1, 2022, to the best of my knowledge, information, and belief, this Technical Report contains all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.

'Signed and Sealed"

Trevor Mills, P.G, SME-RM Dated: August 5, 2021

30 CONSENT OF QUALIFIED PERSONS

I, John Gorham, of Suite 103, 10183-112 Street, Edmonton, Alberta T5K 1M1, Canada, consent to the public filing of the technical report entitled "**Technical Report on the Teels Marsh Property**", (the "Technical Report"), prepared on behalf of HeliosX Lithium & Technologies Corp. (formerly Dajin Lithium Corp.), and dated August 5, 2021, with an effective date of February 1, 2022.

I also consent to the filing of the report with the Canadian Securities regulatory authorities listed above and with SEDAR (System for Electronic Document Analysis and Retrieval), and to extracts from, or a summary of, the Report in written disclosure, news releases, website publication, or other documents filed by HeliosX Lithium & Technologies Corp. (formerly Dajin Lithium Corp.), , including statements concerning the Teels Marsh Property.

I also certify that I am not aware of any other written disclosure derived from the Report that does not fairly and accurately represent the information in the Report.

August 5, 2021

John Gorham, P. Geol.

I, Trevor Mills, of 7000 S. Yosemite St., Suite 115, Centennial, CO 80112, consent to the public filing of the technical report entitled "**Technical Report on the Teels Marsh Property**", (the "Technical Report"), prepared on behalf of HeliosX Lithium & Technologies Corp. (formerly Dajin Lithium Corp.), and dated August 5, 2021, with an effective date of February 1, 2022.

I also consent to the filing of the report with the Canadian Securities regulatory authorities listed above and with SEDAR (System for Electronic Document Analysis and Retrieval), and to extracts from, or a summary of, the Report in written disclosure, news releases, website publication, or other documents filed by HeliosX Lithium & Technologies Corp. (formerly Dajin Lithium Corp.), , including statements concerning the Teels Marsh Property.

I also certify that I am not aware of any other written disclosure derived from the Report that does not fairly and accurately represent the information in the Report.

<mark>August 5, 2021</mark>

Trevor Mills, P.G., SME-RM.

APPENDIX 1: DETAILS OF HELIOSX TEELS MARSH PLACER CLAIMS

Serial Number	Legacy Serial Number	Legacy Lead File Number	Claim Name	County	Case Disposition	Claim Type	Date Of Location	Mer. Twp. Rng. Sec.	Quad.
NV101470768	NMC1124897	NMC1124895	LP 403	MINERAL	ACTIVE	PLACER	3/31/2016	21 0040N 0330E 009	NW
NV101470769	NMC1124898	NMC1124895	LP 404	MINERAL	ACTIVE	PLACER	3/31/2016	21 0040N 0330E 009	NW
NV101470770	NMC1124899	NMC1124895	LP 405	MINERAL	ACTIVE	PLACER	3/31/2016	21 0040N 0330E 009	NW
NV101470771	NMC1124900	NMC1124895	LP 406	MINERAL	ACTIVE	PLACER	3/31/2016	21 0040N 0330E 009	NW
NV101470772	NMC1124903	NMC1124895	LP 409	MINERAL	ACTIVE	PLACER	3/31/2016	21 0040N 0330E 009	NW
NV101470773	NMC1124904	NMC1124895	LP 410	MINERAL	ACTIVE	PLACER	3/31/2016	21 0040N 0330E 009	NW
NV101470774	NMC1124908	NMC1124895	LP 414	MINERAL	ACTIVE	PLACER	3/31/2016	21 0040N 0330E 009	SW
NV101470775	NMC1124914	NMC1124895	LP 420	MINERAL	ACTIVE	PLACER	3/31/2016	21 0040N 0330E 016	NW
NV101470776	NMC1124915	NMC1124895	LP 421	MINERAL	ACTIVE	PLACER	3/31/2016	21 0040N 0330E 016	NW
NV101473059	NMC1124917	NMC1124895	LP 423	MINERAL	ACTIVE	PLACER	3/31/2016	21 0040N 0330E 008	SE
NV101473060	NMC1124920	NMC1124895	LP 426	MINERAL	ACTIVE	PLACER	3/31/2016	21 0040N 0320E 023	NW
NV101473061	NMC1124921	NMC1124895	LP 427	MINERAL	ACTIVE	PLACER	3/31/2016	21 0040N 0320E 023	NW
NV101473062	NMC1124922	NMC1124895	LP 428	MINERAL	ACTIVE	PLACER	3/31/2016	21 0040N 0320E 023	SW
NV101473063	NMC1124923	NMC1124895	LP 429	MINERAL	ACTIVE	PLACER	3/31/2016	21 0040N 0320E 023	SW
NV101473064	NMC1124924	NMC1124895	LP 430	MINERAL	ACTIVE	PLACER	3/31/2016	21 0040N 0320E 023	SE
NV101473065	NMC1124925	NMC1124895	LP 431	MINERAL	ACTIVE	PLACER	3/31/2016	21 0040N 0320E 023	SE
NV101473066	NMC1124926	NMC1124895	LP 432	MINERAL	ACTIVE	PLACER	3/31/2016	21 0040N 0320E 023	SE
NV101473067	NMC1124927	NMC1124895	LP 433	MINERAL	ACTIVE	PLACER	3/31/2016	21 0040N 0320E 023	SE
NV101473068	NMC1124928	NMC1124895	LP 434	MINERAL	ACTIVE	PLACER	3/31/2016	21 0040N 0320E 024	SW
NV101473069	NMC1124929	NMC1124895	LP 435	MINERAL	ACTIVE	PLACER	3/31/2016	21 0040N 0320E 024	SW
NV101473070	NMC1124930	NMC1124895	LP 436	MINERAL	ACTIVE	PLACER	3/31/2016	21 0040N 0320E 024	SW
NV101473071	NMC1124931	NMC1124895	LP 437	MINERAL	ACTIVE	PLACER	3/31/2016	21 0040N 0320E 024	SW
NV101569459	NMC1133578	NMC1133578	LP 629	MINERAL	ACTIVE	PLACER	11/3/2016	21 0040N 0320E 011	SE
NV101569460	NMC1133579	NMC1133578	LP 630	MINERAL	ACTIVE	PLACER	11/3/2016	21 0040N 0320E 011	SW
NV101569461	NMC1133580	NMC1133578	LP 631	MINERAL	ACTIVE	PLACER	11/4/2016	21 0040N 0320E 015	NE
NV101569462	NMC1133581	NMC1133578	LP 632	MINERAL	ACTIVE	PLACER	11/4/2016	21 0040N 0320E 014	NW
NV101569463	NMC1133582	NMC1133578	LP 633	MINERAL	ACTIVE	PLACER	11/4/2016	21 0040N 0320E 014	NW
NV101569464	NMC1133583	NMC1133578	LP 634	MINERAL	ACTIVE	PLACER	11/4/2016	21 0040N 0320E 014	NW
NV101569465	NMC1133584	NMC1133578	LP 635	MINERAL	ACTIVE	PLACER	11/4/2016	21 0040N 0320E 014	NW
NV101644662	NMC1129779	NMC1129779	LP 438	MINERAL	ACTIVE	PLACER	6/7/2016	21 0040N 0320E 011	SE
NV101645883	NMC1129780	NMC1129779	LP 439	MINERAL	ACTIVE	PLACER	6/7/2016	21 0040N 0320E 011	SE
NV101645884	NMC1129781	NMC1129779	LP-440	MINERAL	ACTIVE	PLACER	6/7/2016	21 0040N 0320E 011	SE
NV101645885	NMC1129782	NMC1129779	LP-441	MINERAL	ACTIVE	PLACER	6/7/2016	21 0040N 0320E 012	SW

Serial Number	Legacy Serial Number	Legacy Lead File Number	Claim Name	County	Case Disposition	Claim Type	Date Of Location	Mer. Twp. Rng. Sec.	Quad.
NV101645886	NMC1129783	NMC1129779	LP-442	MINERAL	ACTIVE	PLACER	6/7/2016	21 0040N 0320E 012	sw
NV101645887	NMC1129784	NMC1129779	LP-443	MINERAL	ACTIVE	PLACER	6/7/2016	21 0040N 0320E 012	SW
NV101645888	NMC1129785	NMC1129779	LP-444	MINERAL	ACTIVE	PLACER	6/7/2016	21 0040N 0320E 012	SW
NV101645889	NMC1129786	NMC1129779	LP-445	MINERAL	ACTIVE	PLACER	6/7/2016	21 0040N 0320E 012	SE
NV101645890	NMC1129787	NMC1129779	LP-446	MINERAL	ACTIVE	PLACER	6/7/2016	21 0040N 0320E 012	SE
NV101645891	NMC1129788	NMC1129779	LP-447	MINERAL	ACTIVE	PLACER	6/7/2016	21 0040N 0320E 012	SE
NV101645892	NMC1129789	NMC1129779	LP-448	MINERAL	ACTIVE	PLACER	6/7/2016	21 0040N 0320E 012	SE
NV101645893	NMC1129790	NMC1129779	LP-449	MINERAL	ACTIVE	PLACER	6/7/2016	21 0040N 0330E 007	SW
NV101645894	NMC1129791	NMC1129779	LP-450	MINERAL	ACTIVE	PLACER	6/7/2016	21 0040N 0320E 011	SW
NV101645895	NMC1129792	NMC1129779	LP-451	MINERAL	ACTIVE	PLACER	6/7/2016	21 0040N 0320E 011	SE
NV101645896	NMC1129793	NMC1129779	LP-452	MINERAL	ACTIVE	PLACER	6/7/2016	21 0040N 0320E 011	SE
NV101645897	NMC1129794	NMC1129779	LP-453	MINERAL	ACTIVE	PLACER	6/7/2016	21 0040N 0320E 011	SE
NV101645898	NMC1129795	NMC1129779	LP-454	MINERAL	ACTIVE	PLACER	6/7/2016	21 0040N 0320E 011	SE
NV101645899	NMC1129796	NMC1129779	LP-455	MINERAL	ACTIVE	PLACER	6/7/2016	21 0040N 0320E 012	SW
NV101645900	NMC1129797	NMC1129779	LP-456	MINERAL	ACTIVE	PLACER	6/7/2016	21 0040N 0320E 012	SW
NV101645901	NMC1129798	NMC1129779	LP-457	MINERAL	ACTIVE	PLACER	6/7/2016	21 0040N 0320E 012	SW
NV101645902	NMC1129799	NMC1129779	LP-458	MINERAL	ACTIVE	PLACER	6/7/2016	21 0040N 0320E 012	SW
NV101645903	NMC1129800	NMC1129779	LP-459	MINERAL	ACTIVE	PLACER	6/7/2016	21 0040N 0320E 012	SE
NV101647136	NMC1129801	NMC1129779	LP-460	MINERAL	ACTIVE	PLACER	6/7/2016	21 0040N 0320E 012	SE
NV101647137	NMC1129803	NMC1129779	LP-462	MINERAL	ACTIVE	PLACER	6/7/2016	21 0040N 0320E 014	NW
NV101647138	NMC1129804	NMC1129779	LP-463	MINERAL	ACTIVE	PLACER	6/7/2016	21 0040N 0320E 014	NW
NV101647139	NMC1129805	NMC1129779	LP-464	MINERAL	ACTIVE	PLACER	6/7/2016	21 0040N 0320E 014	SW
NV101647140	NMC1129806	NMC1129779	LP-465	MINERAL	ACTIVE	PLACER	6/7/2016	21 0040N 0320E 014	SW
NV101647141	NMC1129807	NMC1129779	LP-466	MINERAL	ACTIVE	PLACER	6/7/2016	21 0040N 0320E 014	SW
NV101742387	NMC1118220	NMC1118199	LP 307	MINERAL	ACTIVE	PLACER	11/18/2015	21 0040N 0330E 005	SW
NV101742388	NMC1118221	NMC1118199	LP 308	MINERAL	ACTIVE	PLACER	11/18/2015	21 0040N 0330E 005	SW
NV101742389	NMC1118222	NMC1118199	LP 309	MINERAL	ACTIVE	PLACER	11/18/2015	21 0040N 0330E 005	SW
NV101742390	NMC1118223	NMC1118199	LP 310	MINERAL	ACTIVE	PLACER	11/18/2015	21 0040N 0330E 005	SW
NV101742391	NMC1118224	NMC1118199	LP 311	MINERAL	ACTIVE	PLACER	11/18/2015	21 0040N 0330E	SE
NV101742392	NMC1118225	NMC1118199	LP 312	MINERAL	ACTIVE	PLACER	11/18/2015	005 21 0040N 0330E 005	SE
NV101742393	NMC1118226	NMC1118199	LP 313	MINERAL	ACTIVE	PLACER	11/18/2015	21 0040N 0330E	SE
NV101742394	NMC1118227	NMC1118199	LP 314	MINERAL	ACTIVE	PLACER	11/18/2015	005 21 0040N 0330E	SE
NV101742395	NMC1118228	NMC1118199	LP 315	MINERAL	ACTIVE	PLACER	11/18/2015	006 21 0040N 0330E	SE
NV101742396	NMC1118229	NMC1118199	LP 316	MINERAL	ACTIVE	PLACER	11/18/2015	006 21 0040N 0330E 005	SW

Serial Number	Legacy Serial Number	Legacy Lead File Number	Claim Name	County	Case Disposition	Claim Type	Date Of Location	Mer. Twp. Rng. Sec.	Quad.
NV101742397	NMC1118230	NMC1118199	LP 317	MINERAL	ACTIVE	PLACER	11/18/2015	21 0040N 0330E 005	sw
NV101742398	NMC1118231	NMC1118199	LP 318	MINERAL	ACTIVE	PLACER	11/18/2015	21 0040N 0330E 005	SW
NV101742399	NMC1118232	NMC1118199	LP 319	MINERAL	ACTIVE	PLACER	11/18/2015	21 0040N 0330E 005	SW
NV101742400	NMC1118233	NMC1118199	LP 320	MINERAL	ACTIVE	PLACER	11/18/2015	21 0040N 0330E 005	SE
NV101750509	NMC1110573	NMC1110573	LP 3	MINERAL	ACTIVE	PLACER	2/2/2015	21 0040N 0330E 007	NE
NV101750510	NMC1110574	NMC1110573	LP 4	MINERAL	ACTIVE	PLACER	2/2/2015	21 0040N 0330E 007	NE
NV101750511	NMC1110575	NMC1110573	LP 5	MINERAL	ACTIVE	PLACER	2/2/2015	21 0040N 0330E 007	NE
NV101750512	NMC1110576	NMC1110573	LP 6	MINERAL	ACTIVE	PLACER	2/2/2015	21 0040N 0330E 008	NW
NV101750513	NMC1110577	NMC1110573	LP 7	MINERAL	ACTIVE	PLACER	2/2/2015	21 0040N 0330E 008	NW
NV101750514	NMC1110578	NMC1110573	LP 8	MINERAL	ACTIVE	PLACER	2/2/2015	21 0040N 0330E 008	NW
NV101750515	NMC1110579	NMC1110573	LP 9	MINERAL	ACTIVE	PLACER	2/2/2015	21 0040N 0330E 008	NW
NV101750516	NMC1110581	NMC1110573	LP 14	MINERAL	ACTIVE	PLACER	2/2/2015	21 0040N 0330E 007	NE
NV101750517	NMC1110582	NMC1110573	LP 15	MINERAL	ACTIVE	PLACER	2/2/2015	21 0040N 0330E 007	NE
NV101750518	NMC1110583	NMC1110573	LP 16	MINERAL	ACTIVE	PLACER	2/2/2015	21 0040N 0330E 007	NE
NV101750519	NMC1110584	NMC1110573	LP 17	MINERAL	ACTIVE	PLACER	2/2/2015	21 0040N 0330E 007	NE
NV101750520	NMC1110585	NMC1110573	LP 18	MINERAL	ACTIVE	PLACER	2/2/2015	21 0040N 0330E 008	NW
NV101751843	NMC1110586	NMC1110573	LP 19	MINERAL	ACTIVE	PLACER	2/2/2015	21 0040N 0330E 008	NW
NV101751844	NMC1110588	NMC1110573	LP 27	MINERAL	ACTIVE	PLACER	2/2/2015	21 0040N 0330E 007	SW
NV101751845	NMC1110589	NMC1110573	LP 28	MINERAL	ACTIVE	PLACER	2/2/2015	21 0040N 0330E 007	SE
NV101751846	NMC1110590	NMC1110573	LP 29	MINERAL	ACTIVE	PLACER	2/2/2015	21 0040N 0330E 007	SE
NV101751847	NMC1110591	NMC1110573	LP 30	MINERAL	ACTIVE	PLACER	2/2/2015	21 0040N 0330E 007	SE
NV101751848	NMC1110592	NMC1110573	LP 31	MINERAL	ACTIVE	PLACER	2/2/2015	21 0040N 0330E 007	SE
NV101751849	NMC1110593	NMC1110573	LP 32	MINERAL	ACTIVE	PLACER	2/2/2015	21 0040N 0330E 008	SW
NV101751850	NMC1110594	NMC1110573	LP 33	MINERAL	ACTIVE	PLACER	2/2/2015	21 0040N 0330E 008	SW
NV101751851	NMC1110595	NMC1110573	LP 34	MINERAL	ACTIVE	PLACER	2/2/2015	21 0040N 0330E 008	SW
NV101751852	NMC1110596	NMC1110573	LP 35	MINERAL	ACTIVE	PLACER	2/2/2015	21 0040N 0330E 008	SW
NV101751853	NMC1110597	NMC1110573	LP 45	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0330E 007	SW
NV101751854	NMC1110598	NMC1110573	LP 46	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0330E 007	SW
NV101751855	NMC1110599	NMC1110573	LP 47	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0330E	SW
NV101751856	NMC1110600	NMC1110573	LP 48	MINERAL	ACTIVE	PLACER	2/3/2015	007 21 0040N 0330E	SW
NV101751857	NMC1110601	NMC1110573	LP 49	MINERAL	ACTIVE	PLACER	2/3/2015	007 21 0040N 0330E	SE
NV101751858	NMC1110602	NMC1110573	LP 50	MINERAL	ACTIVE	PLACER	2/3/2015	007 21 0040N 0330E	SE
NV101751859	NMC1110603	NMC1110573	LP 51	MINERAL	ACTIVE	PLACER	2/3/2015	007 21 0040N 0330E	SE
NV101751860	NMC1110604	NMC1110573	LP 52	MINERAL	ACTIVE	PLACER	2/3/2015	007 21 0040N 0330E 007	SE

Serial Number	Legacy Serial Number	Legacy Lead File Number	Claim Name	County	Case Disposition	Claim Type	Date Of Location	Mer. Twp. Rng. Sec.	Quad.
NV101751861	NMC1110605	NMC1110573	LP 53	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0330E 008	sw
NV101751862	NMC1110606	NMC1110573	LP 54	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0330E 008	SW
NV101751863	NMC1110607	NMC1110573	LP 55	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0330E 008	SW
NV101751864	NMC1110608	NMC1110573	LP 56	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0330E 008	sw
NV101753186	NMC1110609	NMC1110573	LP 59	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0320E 014	NE
NV101753187	NMC1110610	NMC1110573	LP 60	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0320E 014	NE
NV101753188	NMC1110611	NMC1110573	LP 61	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0320E 014	NE
NV101753189	NMC1110612	NMC1110573	LP 62	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0320E 014	NE
NV101753190	NMC1110613	NMC1110573	LP 68	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0320E 013	NE
NV101753191	NMC1110614	NMC1110573	LP 69	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0320E 013	NE
NV101753192	NMC1110615	NMC1110573	LP 70	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0320E 013	NE
NV101753193	NMC1110616	NMC1110573	LP 71	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0330E 018	NW
NV101753194	NMC1110617	NMC1110573	LP 72	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0330E 018	NW
NV101753195	NMC1110618	NMC1110573	LP 73	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0330E 018	NW
NV101753196	NMC1110619	NMC1110573	LP 74	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0330E 018	NW
NV101753197	NMC1110620	NMC1110573	LP 75	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0330E 018	NE
NV101753198	NMC1110621	NMC1110573	LP 76	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0330E 018	NE
NV101753199	NMC1110622	NMC1110573	LP 77	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0330E 018	NE
NV101753200	NMC1110623	NMC1110573	LP 78	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0330E 018	NE
NV101753201	NMC1110624	NMC1110573	LP 79	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0330E 017	NW
NV101753202	NMC1110625	NMC1110573	LP 80	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0330E 017	NW
NV101753203	NMC1110626	NMC1110573	LP 81	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0330E 017	NW
NV101753204	NMC1110627	NMC1110573	LP 82	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0330E 017	NW
NV101753205	NMC1110629	NMC1110573	LP 92	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0320E 014	NE
NV101753206	NMC1110630	NMC1110573	LP 93	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0320E 014	NE
NV101753207	NMC1110631	NMC1110573	LP 94	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0320E 014	NE
NV101753547	NMC1137226	NMC1137226	LP 562	MINERAL	FILED	PLACER	12/30/2016	21 0050N 0330E 031	sw
NV101753548	NMC1137227	NMC1137226	LP 563	MINERAL	FILED	PLACER	12/30/2016	21 0050N 0330E 031	sw
NV101753549	NMC1137228	NMC1137226	LP 564	MINERAL	FILED	PLACER	12/30/2016	21 0050N 0330E 031	SE
NV101753550	NMC1137229	NMC1137226	LP 565	MINERAL	FILED	PLACER	12/30/2016	21 0050N 0330E 031	SE
NV101753551	NMC1137230	NMC1137226	LP 566	MINERAL	FILED	PLACER	12/30/2016	21 0050N 0330E 031	SE
NV101753552	NMC1137231	NMC1137226	LP 567	MINERAL	FILED	PLACER	12/30/2016	21 0050N 0330E 031	SE
NV101753553	NMC1137232	NMC1137226	LP 568	MINERAL	FILED	PLACER	12/30/2016	21 0050N 0330E	SW
NV101753554	NMC1137233	NMC1137226	LP 569	MINERAL	FILED	PLACER	12/30/2016	032 21 0050N 0330E 032	sw

Serial Number	Legacy Serial Number	Legacy Lead File Number	Claim Name	County	Case Disposition	Claim Type	Date Of Location	Mer. Twp. Rng. Sec.	Quad.
NV101753555	NMC1137234	NMC1137226	LP 570	MINERAL	FILED	PLACER	12/28/2016	21 0050N 0330E 031	sw
NV101753556	NMC1137235	NMC1137226	LP 571	MINERAL	FILED	PLACER	12/30/2016	21 0050N 0330E 031	SW
NV101753557	NMC1137236	NMC1137226	LP 572	MINERAL	FILED	PLACER	12/30/2016	21 0050N 0330E 031	SW
NV101753558	NMC1137237	NMC1137226	LP 573	MINERAL	FILED	PLACER	12/30/2016	21 0050N 0330E 031	SW
NV101753559	NMC1137238	NMC1137226	LP 574	MINERAL	FILED	PLACER	12/30/2016	21 0050N 0330E 031	SE
NV101753560	NMC1137239	NMC1137226	LP 575	MINERAL	FILED	PLACER	12/30/2016	21 0050N 0330E 031	SE
NV101753561	NMC1137240	NMC1137226	LP 576	MINERAL	FILED	PLACER	12/30/2016	21 0050N 0330E 031	SE
NV101753562	NMC1137241	NMC1137226	LP 577	MINERAL	FILED	PLACER	12/30/2016	21 0050N 0330E 031	SE
NV101753563	NMC1137242	NMC1137226	LP 578	MINERAL	FILED	PLACER	12/30/2016	21 0050N 0330E 032	SW
NV101753564	NMC1137243	NMC1137226	LP 579	MINERAL	FILED	PLACER	12/30/2016	21 0050N 0330E 032	SW
NV101754532	NMC1110632	NMC1110573	LP 95	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0320E 014	NE
NV101754533	NMC1110633	NMC1110573	LP 96	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0320E 013	NW
NV101754534	NMC1110634	NMC1110573	LP 97	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0320E 013	NW
NV101754535	NMC1110635	NMC1110573	LP 98	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0320E 013	NW
NV101754536	NMC1110636	NMC1110573	LP 99	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0320E 013	NW
NV101754537	NMC1110637	NMC1110573	LP 100	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0320E 013	NE
NV101754538	NMC1110638	NMC1110573	LP 101	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0320E 013	NE
NV101754539	NMC1110639	NMC1110573	LP 102	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0320E 013	NE
NV101754540	NMC1110640	NMC1110573	LP 103	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0320E 013	NE
NV101754541	NMC1110641	NMC1110573	LP 104	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0330E 018	NW
NV101754542	NMC1110642	NMC1110573	LP 105	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0330E 018	NW
NV101754543	NMC1110643	NMC1110573	LP 106	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0330E 018	NW
NV101754544	NMC1110644	NMC1110573	LP 107	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0330E 018	NW
NV101754545	NMC1110645	NMC1110573	LP 108	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0330E 018	NE
NV101754546	NMC1110646	NMC1110573	LP 109	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0330E 018	NE
NV101754547	NMC1110647	NMC1110573	LP 110	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0330E 018	NE
NV101754548	NMC1110648	NMC1110573	LP 111	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0330E 018	NE
NV101754549	NMC1110649	NMC1110573	LP 112	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0330E 017	NW
NV101754550	NMC1110650	NMC1110573	LP 113	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0330E 017	NW
NV101754551	NMC1110651	NMC1110573	LP 114	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0330E 017	NW
NV101754552	NMC1110652	NMC1110573	LP 115	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0330E 017	NW
NV101754890	NMC1137244	NMC1137226	LP 580	MINERAL	FILED	PLACER	12/28/2016	21 0040N 0320E 001	NE
NV101754891	NMC1137245	NMC1137226	LP 581	MINERAL	FILED	PLACER	12/28/2016	21 0040N 0330E 006	NW
NV101754892	NMC1137246	NMC1137226	LP 582	MINERAL	FILED	PLACER	12/28/2016	21 0040N 0330E 006	NW

Serial Number	Legacy Serial Number	Legacy Lead File Number	Claim Name	County	Case Disposition	Claim Type	Date Of Location	Mer. Twp. Rng. Sec.	Quad.
NV101754893	NMC1137247	NMC1137226	LP 583	MINERAL	FILED	PLACER	12/28/2016	21 0040N 0330E 006	NW
NV101754894	NMC1137248	NMC1137226	LP 584	MINERAL	FILED	PLACER	12/28/2016	21 0040N 0330E 006	NW
NV101754895	NMC1137249	NMC1137226	LP 585	MINERAL	FILED	PLACER	12/29/2016	21 0040N 0330E 005	NW
NV101754896	NMC1137250	NMC1137226	LP 586	MINERAL	FILED	PLACER	12/29/2016	21 0040N 0330E 005	NW
NV101754897	NMC1137251	NMC1137226	LP 587	MINERAL	FILED	PLACER	12/29/2016	21 0040N 0330E 005	NW
NV101754898	NMC1137252	NMC1137226	LP 588	MINERAL	FILED	PLACER	12/29/2016	21 0040N 0330E 005	NW
NV101754899	NMC1137253	NMC1137226	LP 589	MINERAL	FILED	PLACER	12/29/2016	21 0040N 0330E 005	NE
NV101754900	NMC1137254	NMC1137226	LP 590	MINERAL	FILED	PLACER	12/28/2016	21 0040N 0320E 001	NE
NV101754901	NMC1137255	NMC1137226	LP 591	MINERAL	FILED	PLACER	12/28/2016	21 0040N 0320E 001	NE
NV101754902	NMC1137256	NMC1137226	LP 592	MINERAL	FILED	PLACER	12/28/2016	21 0040N 0330E 006	NW
NV101754903	NMC1137257	NMC1137226	LP 593	MINERAL	FILED	PLACER	12/28/2016	21 0040N 0330E 006	NW
NV101754904	NMC1137258	NMC1137226	LP 594	MINERAL	FILED	PLACER	12/28/2016	21 0040N 0330E 006	NW
NV101754905	NMC1137259	NMC1137226	LP 595	MINERAL	FILED	PLACER	12/28/2016	21 0040N 0330E 006	NW
NV101754906	NMC1137260	NMC1137226	LP 596	MINERAL	FILED	PLACER	12/28/2016	21 0040N 0320E 001	SE
NV101754907	NMC1137261	NMC1137226	LP 597	MINERAL	FILED	PLACER	12/28/2016	21 0040N 0320E 001	SE
NV101754908	NMC1137262	NMC1137226	LP 598	MINERAL	FILED	PLACER	12/28/2016	21 0040N 0320E 001	SE
NV101754909	NMC1137263	NMC1137226	LP 599	MINERAL	FILED	PLACER	12/28/2016	21 0040N 0330E 006	SW
NV101754910	NMC1137264	NMC1137226	LP 600	MINERAL	FILED	PLACER	12/28/2016	21 0040N 0330E 006	SW
NV101755877	NMC1110653	NMC1110573	LP 125	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0320E 014	SW
NV101755878	NMC1110654	NMC1110573	LP 126	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0320E 014	SE
NV101755879	NMC1110655	NMC1110573	LP 127	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0320E 014	SE
NV101755880	NMC1110656	NMC1110573	LP 128	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0320E 014	SE
NV101755881	NMC1110657	NMC1110573	LP 129	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0320E 014	SE
NV101755882	NMC1110658	NMC1110573	LP 130	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0320E 013	SW
NV101755883	NMC1110659	NMC1110573	LP 131	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0320E 013	SW
NV101755884	NMC1110660	NMC1110573	LP 132	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0320E 013	SW
NV101755885	NMC1110661	NMC1110573	LP 133	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0320E 013	SW
NV101755886	NMC1110662	NMC1110573	LP 134	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0320E 013	SE
NV101755887	NMC1110663	NMC1110573	LP 135	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0320E 013	SE
NV101755888	NMC1110664	NMC1110573	LP 136	MINERAL	ACTIVE	PLACER	2/2/2015	21 0040N 0320E 013	SE
NV101755889	NMC1110665	NMC1110573	LP 137	MINERAL	ACTIVE	PLACER	2/2/2015	21 0040N 0320E 013	SE
NV101755890	NMC1110666	NMC1110573	LP 138	MINERAL	ACTIVE	PLACER	2/2/2015	21 0040N 0330E 018	sw
NV101755891	NMC1110667	NMC1110573	LP 139	MINERAL	ACTIVE	PLACER	2/2/2015	21 0040N 0330E 018	SW
NV101755892	NMC1110668	NMC1110573	LP 140	MINERAL	ACTIVE	PLACER	2/2/2015	21 0040N 0330E 018	SW

Serial Number	Legacy Serial Number	Legacy Lead File Number	Claim Name	County	Case Disposition	Claim Type	Date Of Location	Mer. Twp. Rng. Sec.	Quad.
NV101755893	NMC1110669	NMC1110573	LP 141	MINERAL	ACTIVE	PLACER	2/2/2015	21 0040N 0330E 018	SW
NV101755894	NMC1110670	NMC1110573	LP 142	MINERAL	ACTIVE	PLACER	2/2/2015	21 0040N 0330E 018	SE
NV101755895	NMC1110671	NMC1110573	LP 143	MINERAL	ACTIVE	PLACER	2/2/2015	21 0040N 0330E 018	SE
NV101755896	NMC1110672	NMC1110573	LP 144	MINERAL	ACTIVE	PLACER	2/2/2015	21 0040N 0330E 018	SE
NV101755897	NMC1110673	NMC1110573	LP 145	MINERAL	ACTIVE	PLACER	2/2/2015	21 0040N 0330E 018	SE
NV101756236	NMC1137265	NMC1137226	LP 601	MINERAL	FILED	PLACER	12/28/2016	21 0040N 0330E 006	sw
NV101756237	NMC1137266	NMC1137226	LP 602	MINERAL	FILED	PLACER	12/28/2016	21 0040N 0330E 006	sw
NV101756238	NMC1137267	NMC1137226	LP 603	MINERAL	FILED	PLACER	12/28/2016	21 0040N 0330E 006	SE
NV101756239	NMC1137268	NMC1137226	LP 604	MINERAL	FILED	PLACER	12/28/2016	21 0040N 0320E 001	SE
NV101756240	NMC1137269	NMC1137226	LP 605	MINERAL	FILED	PLACER	12/28/2016	21 0040N 0320E 001	SE
NV101756241	NMC1137270	NMC1137226	LP 606	MINERAL	FILED	PLACER	12/28/2016	21 0040N 0320E 001	SE
NV101756242	NMC1137271	NMC1137226	LP 607	MINERAL	FILED	PLACER	12/28/2016	21 0040N 0320E 001	SE
NV101756243	NMC1137272	NMC1137226	LP 608	MINERAL	FILED	PLACER	12/28/2016	21 0040N 0330E 006	SW
NV101756244	NMC1137273	NMC1137226	LP 609	MINERAL	FILED	PLACER	12/28/2016	21 0040N 0330E 006	SW
NV101756245	NMC1137274	NMC1137226	LP 610	MINERAL	FILED	PLACER	12/28/2016	21 0040N 0330E 006	SW
NV101756246	NMC1137275	NMC1137226	LP 611	MINERAL	FILED	PLACER	12/28/2016	21 0040N 0330E 006	SW
NV101756247	NMC1137276	NMC1137226	LP 612	MINERAL	FILED	PLACER	12/28/2016	21 0040N 0320E 012	NW
NV101756248	NMC1137277	NMC1137226	LP 613	MINERAL	FILED	PLACER	12/28/2016	21 0040N 0320E 012	NE
NV101756249	NMC1137278	NMC1137226	LP 614	MINERAL	FILED	PLACER	12/28/2016	21 0040N 0320E 012	NE
NV101756250	NMC1137279	NMC1137226	LP 615	MINERAL	FILED	PLACER	12/28/2016	21 0040N 0320E 012	NE
NV101756251	NMC1137280	NMC1137226	LP 616	MINERAL	FILED	PLACER	12/28/2016	21 0040N 0320E 012	NE
NV101756252	NMC1137281	NMC1137226	LP 617	MINERAL	FILED	PLACER	12/28/2016	21 0040N 0330E 007	NW
NV101756253	NMC1137282	NMC1137226	LP 618	MINERAL	FILED	PLACER	12/28/2016	21 0040N 0330E	NW
NV101756254	NMC1137283	NMC1137226	LP 619	MINERAL	FILED	PLACER	12/28/2016	007 21 0040N 0330E 007	NW
NV101756255	NMC1137284	NMC1137226	LP 620	MINERAL	FILED	PLACER	12/28/2016	21 0040N 0320E	NW
NV101756256	NMC1137285	NMC1137226	LP 621	MINERAL	FILED	PLACER	12/28/2016	012 21 0040N 0320E 012	NE
NV101757220	NMC1110674	NMC1110573	LP 157	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0320E	SW
NV101757221	NMC1110675	NMC1110573	LP 158	MINERAL	ACTIVE	PLACER	2/3/2015	014 21 0040N 0320E	SE
NV101757222	NMC1110676	NMC1110573	LP 159	MINERAL	ACTIVE	PLACER	2/3/2015	014 21 0040N 0320E	SE
NV101757223	NMC1110677	NMC1110573	LP 160	MINERAL	ACTIVE	PLACER	2/3/2015	014 21 0040N 0320E	SE
NV101757224	NMC1110678	NMC1110573	LP 161	MINERAL	ACTIVE	PLACER	2/3/2015	014 21 0040N 0320E	SE
NV101757225	NMC1110692	NMC1110573	LP 188	MINERAL	ACTIVE	PLACER	2/3/2015	014 21 0040N 0320E	NE
NV101757226	NMC1110693	NMC1110573	LP 189	MINERAL	ACTIVE	PLACER	2/3/2015	023 21 0040N 0320E	NE
NV101757227	NMC1110694	NMC1110573	LP 190	MINERAL	ACTIVE	PLACER	2/3/2015	023 21 0040N 0320E 023	NE

Serial Number	Legacy Serial Number	Legacy Lead File Number	Claim Name	County	Case Disposition	Claim Type	Date Of Location	Mer. Twp. Rng. Sec.	Quad.
NV101757228	NMC1110695	NMC1110573	LP 191	MINERAL	ACTIVE	PLACER	2/3/2015	21 0040N 0320E 023	NE
NV101757578	NMC1137286	NMC1137226	LP 622	MINERAL	FILED	PLACER	12/28/2016	21 0040N 0320E 012	NE
NV101757579	NMC1137287	NMC1137226	LP 623	MINERAL	FILED	PLACER	12/28/2016	21 0040N 0320E 012	NE
NV101757580	NMC1137288	NMC1137226	LP 624	MINERAL	FILED	PLACER	12/28/2016	21 0040N 0320E 012	NE
NV101757581	NMC1137289	NMC1137226	LP 625	MINERAL	FILED	PLACER	12/28/2016	21 0040N 0330E 007	NW
NV101757582	NMC1137290	NMC1137226	LP 626	MINERAL	FILED	PLACER	12/28/2016	21 0040N 0330E 007	NW
NV101757583	NMC1137291	NMC1137226	LP 627	MINERAL	FILED	PLACER	12/29/2016	21 0050N 0330E 032	SE
NV101844068	NMC1133551	NMC1133551	LP 243	MINERAL	ACTIVE	PLACER	11/9/2016	21 0040N 0330E 016	NW
NV101844069	NMC1133552	NMC1133551	LP 244	MINERAL	ACTIVE	PLACER	11/9/2016	21 0040N 0330E 016	NW
NV101844070	NMC1133553	NMC1133551	LP 245	MINERAL	ACTIVE	PLACER	11/9/2016	21 0040N 0330E 016	NW
NV101844071	NMC1133554	NMC1133551	LP 246	MINERAL	ACTIVE	PLACER	11/9/2016	21 0040N 0330E 016	NW
NV101844072	NMC1133555	NMC1133551	LP 247	MINERAL	ACTIVE	PLACER	11/9/2016	21 0040N 0330E 017	NE
NV101844073	NMC1133556	NMC1133551	LP 248	MINERAL	ACTIVE	PLACER	11/9/2016	21 0040N 0330E 017	NE
NV101844074	NMC1133557	NMC1133551	LP 249	MINERAL	ACTIVE	PLACER	11/9/2016	21 0040N 0330E 017	NE
NV101844075	NMC1133558	NMC1133551	LP 250	MINERAL	ACTIVE	PLACER	11/9/2016	21 0040N 0330E 008	SE
NV101844076	NMC1133559	NMC1133551	LP 251	MINERAL	ACTIVE	PLACER	11/9/2016	21 0040N 0330E 008	SE
NV101845441	NMC1133560	NMC1133551	LP 252	MINERAL	ACTIVE	PLACER	11/9/2016	21 0040N 0330E 008	SE
NV101845442	NMC1133561	NMC1133551	LP 253	MINERAL	ACTIVE	PLACER	11/9/2016	21 0040N 0330E 008	SE
NV101845443	NMC1133562	NMC1133551	LP 254	MINERAL	ACTIVE	PLACER	11/9/2016	21 0040N 0330E 008	NE
NV101845444	NMC1133563	NMC1133551	LP 255	MINERAL	ACTIVE	PLACER	11/9/2016	21 0040N 0330E 008	NW
NV101845445	NMC1133564	NMC1133551	LP 256	MINERAL	ACTIVE	PLACER	11/9/2016	21 0040N 0330E 008	NW
NV101845446	NMC1133565	NMC1133551	LP 257	MINERAL	ACTIVE	PLACER	11/9/2016	21 0040N 0330E 008	NE
NV101845447	NMC1133566	NMC1133551	LP 258	MINERAL	ACTIVE	PLACER	11/9/2016	21 0040N 0330E 008	NE
NV101845448	NMC1133567	NMC1133551	LP 259	MINERAL	ACTIVE	PLACER	11/9/2016	21 0040N 0330E 008	NE
NV101845449	NMC1133568	NMC1133551	LP 260	MINERAL	ACTIVE	PLACER	11/9/2016	21 0040N 0330E 008	NE
NV101845450	NMC1133569	NMC1133551	LP 261	MINERAL	ACTIVE	PLACER	11/9/2016	21 0040N 0330E 008	NE
NV101845451	NMC1133570	NMC1133551	LP 262	MINERAL	ACTIVE	PLACER	11/9/2016	21 0040N 0330E 009	NW
NV101845452	NMC1133571	NMC1133551	LP 263	MINERAL	ACTIVE	PLACER	11/9/2016	21 0040N 0330E 009	NW
NV101845453	NMC1133572	NMC1133551	LP 264	MINERAL	ACTIVE	PLACER	11/9/2016	21 0040N 0330E 009	sw
NV101845454	NMC1133573	NMC1133551	LP 265	MINERAL	ACTIVE	PLACER	11/9/2016	21 0040N 0330E 009	sw
NV101845455	NMC1133574	NMC1133551	LP 266	MINERAL	ACTIVE	PLACER	11/9/2016	21 0040N 0330E 009	sw
NV101845456	NMC1133575	NMC1133551	LP 267	MINERAL	ACTIVE	PLACER	11/9/2016	21 0040N 0330E 009	sw
NV101845457	NMC1133576	NMC1133551	LP 268	MINERAL	ACTIVE	PLACER	11/9/2016	21 0040N 0330E 009	SW
NV101845458	NMC1133577	NMC1133551	LP 269	MINERAL	ACTIVE	PLACER	11/9/2016	21 0040N 0330E 009	SW

Serial Number	Legacy Serial Number	Legacy Lead File Number	Claim Name	County	Case Disposition	Claim Type	Date Of Location	Mer. Twp. Rng. Sec.	Quad.
NV101848984	NMC1118256	NMC1118199	LP 163	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0320E 013	sw
NV101848985	NMC1118257	NMC1118199	LP 164	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0320E 013	SW
NV101848986	NMC1118258	NMC1118199	LP 165	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0320E 013	SW
NV101848987	NMC1118259	NMC1118199	LP 166	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0320E 013	SE
NV101848988	NMC1118260	NMC1118199	LP 167	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0320E 013	SE
NV101848989	NMC1118261	NMC1118199	LP 168	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0320E 013	SE
NV101848990	NMC1118262	NMC1118199	LP 169	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0320E 013	SE
NV101848991	NMC1118263	NMC1118199	LP 170	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0330E 018	SW
NV101848992	NMC1118264	NMC1118199	LP 171	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0330E 018	SW
NV101848993	NMC1118265	NMC1118199	LP 172	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0330E 018	sw
NV101848994	NMC1118266	NMC1118199	LP 173	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0330E 018	SW
NV101848995	NMC1118267	NMC1118199	LP 192	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0320E 024	NW
NV101848996	NMC1118268	NMC1118199	LP 193	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0320E 024	NW
NV101848997	NMC1118269	NMC1118199	LP 194	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0320E 024	NW
NV101848998	NMC1118270	NMC1118199	LP 195	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0320E 024	NW
NV101848999	NMC1118271	NMC1118199	LP 196	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0320E 024	NE
NV101849000	NMC1118272	NMC1118199	LP 197	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0320E 024	NE
NV101849183	NMC1118273	NMC1118199	LP 198	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0320E 024	NE
NV101849184	NMC1118274	NMC1118199	LP 199	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0320E 024	NE
NV101849185	NMC1118275	NMC1118199	LP 200	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0330E 019	NW
NV101849186	NMC1118276	NMC1118199	LP 201	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0330E 019	NW
NV101849187	NMC1118277	NMC1118199	LP 202	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0330E 019	NW
NV101849188	NMC1118278	NMC1118199	LP 203	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0330E 019	NW
NV101849189	NMC1118279	NMC1118199	LP 211	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0320E 023	NE
NV101849190	NMC1118280	NMC1118199	LP 212	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0320E 023	NE
NV101849191	NMC1118281	NMC1118199	LP 214	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0320E 023	NE
NV101849192	NMC1118282	NMC1118199	LP 214	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0320E 023	NE
NV101849193	NMC1118283	NMC1118199	LP 215	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0320E 024	NW
NV101849194	NMC1118284	NMC1118199	LP 216	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0320E 024	NW
NV101849195	NMC1118285	NMC1118199	LP 217	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0320E 024	NW
NV101849196	NMC1118286	NMC1118199	LP 218	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0320E 024	NW
NV101849197	NMC1118287	NMC1118199	LP 219	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0320E 024	NE
NV101849198	NMC1118288	NMC1118199	LP 220	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0320E 024	NE
NV101849199	NMC1118289	NMC1118199	LP 221	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0320E 024	NE

Serial Number	Legacy Serial Number	Legacy Lead File Number	Claim Name	County	Case Disposition	Claim Type	Date Of Location	Mer. Twp. Rng. Sec.	Quad.
NV101849200	NMC1118290	NMC1118199	LP 222	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0320E 024	NE
NV101849326	NMC1118199	NMC1118199	LP 116	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0330E 017	NE
NV101849327	NMC1118200	NMC1118199	LP 117	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0330E 017	NE
NV101849328	NMC1118201	NMC1118199	LP 118	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0330E 017	NE
NV101849329	NMC1118202	NMC1118199	LP 119	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0330E 017	NE
NV101849330	NMC1118203	NMC1118199	LP 120	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0330E 016	NW
NV101849331	NMC1118204	NMC1118199	LP 121	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0330E 016	NW
NV101849332	NMC1118205	NMC1118199	LP 146	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0330E 017	SW
NV101849333	NMC1118206	NMC1118199	LP 147	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0330E 017	sw
NV101849334	NMC1118207	NMC1118199	LP 148	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0330E 017	sw
NV101849335	NMC1118208	NMC1118199	LP 149	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0330E 017	sw
NV101849336	NMC1118209	NMC1118199	LP 150	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0330E 017	SE
NV101849337	NMC1118210	NMC1118199	LP 151	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0330E 017	SE
NV101849338	NMC1118211	NMC1118199	LP 152	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0330E 017	SE
NV101849339	NMC1118212	NMC1118199	LP 174	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0330E 018	SE
NV101849340	NMC1118213	NMC1118199	LP 175	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0330E 018	SE
NV101849341	NMC1118214	NMC1118199	LP 176	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0330E 018	SE
NV101849342	NMC1118215	NMC1118199	LP 177	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0330E 018	SE
NV101849343	NMC1118216	NMC1118199	LP 204	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0330E 019	NE
NV101849344	NMC1118217	NMC1118199	LP 205	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0330E 019	NE
NV101849345	NMC1118218	NMC1118199	LP 305	MINERAL	ACTIVE	PLACER	11/18/2015	21 0040N 0330E 006	SE
NV101849346	NMC1118219	NMC1118199	LP 306	MINERAL	ACTIVE	PLACER	11/18/2015	21 0040N 0330E 006	SE
NV101849347	NMC1118307	NMC1118199	LP 303	MINERAL	ACTIVE	PLACER	11/18/2015	21 0040N 0320E 013	NW
NV101849348	NMC1118308	NMC1118199	LP 304	MINERAL	ACTIVE	PLACER	11/18/2015	21 0040N 0320E 013	NE
NV101849349	NMC1118309	NMC1118199	LP 332	MINERAL	ACTIVE	PLACER	11/23/2015	21 0040N 0330E 007	NW
NV101849350	NMC1118310	NMC1118199	LP 333	MINERAL	ACTIVE	PLACER	11/23/2015	21 0040N 0330E 007	NE
NV101849351	NMC1118311	NMC1118199	LP 334	MINERAL	ACTIVE	PLACER	11/23/2015	21 0040N 0330E 007	NW
NV101849352	NMC1118312	NMC1118199	LP 335	MINERAL	ACTIVE	PLACER	11/23/2015	21 0040N 0330E 007	NW
NV101849353	NMC1118313	NMC1118199	LP 336	MINERAL	ACTIVE	PLACER	11/23/2015	21 0040N 0330E 007	sw
NV101849354	NMC1118314	NMC1118199	LP 337	MINERAL	ACTIVE	PLACER	11/23/2015	21 0040N 0330E 007	SW
NV101849355	NMC1118315	NMC1118199	LP 338	MINERAL	ACTIVE	PLACER	11/23/2015	21 0040N 0320E 012	SE
NV101849356	NMC1118316	NMC1118199	LP 339	MINERAL	ACTIVE	PLACER	11/23/2015	21 0040N 0320E 012	SE
NV101849570	NMC1118234	NMC1118199	LP 321	MINERAL	ACTIVE	PLACER	11/18/2015	21 0040N 0330E 005	SE
NV101849571	NMC1118235	NMC1118199	LP 322	MINERAL	ACTIVE	PLACER	11/18/2015	21 0040N 0330E 005	SE

Serial Number	Legacy Serial Number	Legacy Lead File Number	Claim Name	County	Case Disposition	Claim Type	Date Of Location	Mer. Twp. Rng. Sec.	Quad.
NV101849572	NMC1118236	NMC1118199	LP 324	MINERAL	ACTIVE	PLACER	11/18/2015	21 0040N 0330E 005	NW
NV101849573	NMC1118237	NMC1118199	LP 325	MINERAL	ACTIVE	PLACER	11/18/2015	21 0040N 0330E 005	NW
NV101849574	NMC1118238	NMC1118199	LP 326	MINERAL	ACTIVE	PLACER	11/18/2015	21 0040N 0330E 005	NW
NV101849575	NMC1118239	NMC1118199	LP 327	MINERAL	ACTIVE	PLACER	11/18/2015	21 0040N 0330E 005	NW
NV101849576	NMC1118240	NMC1118199	LP 328	MINERAL	ACTIVE	PLACER	11/23/2015	21 0040N 0330E 005	NE
NV101849577	NMC1118241	NMC1118199	LP 329	MINERAL	ACTIVE	PLACER	11/23/2015	21 0040N 0330E 006	SE
NV101849578	NMC1118242	NMC1118199	LP 330	MINERAL	ACTIVE	PLACER	11/23/2015	21 0040N 0330E 006	SE
NV101849579	NMC1118243	NMC1118199	LP 331	MINERAL	ACTIVE	PLACER	11/23/2015	21 0040N 0330E 006	SE
NV101849580	NMC1118245	NMC1118199	LP 341	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0330E 005	SE
NV101849581	NMC1118246	NMC1118199	LP 342	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0330E 004	SW
NV101849582	NMC1118247	NMC1118199	LP 343	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0330E 004	SW
NV101849583	NMC1118248	NMC1118199	LP 344	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0330E 004	SW
NV101849584	NMC1118249	NMC1118199	LP 345	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0330E 004	sw
NV101849585	NMC1118250	NMC1118199	LP 346	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0330E 005	SE
NV101849586	NMC1118251	NMC1118199	LP 347	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0330E 004	sw
NV101849587	NMC1118252	NMC1118199	LP 348	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0330E 004	sw
NV101849588	NMC1118253	NMC1118199	LP 349	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0330E 004	sw
NV101849589	NMC1118254	NMC1118199	LP 350	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0330E 004	sw
NV101849590	NMC1118255	NMC1118199	LP 162	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0320E 013	sw
NV101849591	NMC1118291	NMC1118199	LP 223	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0330E 019	NW
NV101849592	NMC1118292	NMC1118199	LP 224	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0330E 019	NW
NV101849593	NMC1118293	NMC1118199	LP 225	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0330E 019	NW
NV101849594	NMC1118294	NMC1118199	LP 226	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0330E 019	NW
NV101849595	NMC1118295	NMC1118199	LP 234	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0320E 023	SE
NV101849596	NMC1118296	NMC1118199	LP 235	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0320E 023	SE
NV101849597	NMC1118297	NMC1118199	LP 236	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0320E 023	SE
NV101849598	NMC1118298	NMC1118199	LP 237	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0320E 023	SE
NV101849599	NMC1118299	NMC1118199	LP 238	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0320E 024	sw
NV101849600	NMC1118300	NMC1118199	LP 239	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0320E 024	sw
NV101849722	NMC1118301	NMC1118199	LP 240	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0320E 024	SW
NV101849723	NMC1118302	NMC1118199	LP 241	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0320E 024	sw
NV101849724	NMC1118303	NMC1118199	LP 242	MINERAL	ACTIVE	PLACER	11/4/2015	21 0040N 0320E 024	SE
NV101849725	NMC1118304	NMC1118199	LP 300	MINERAL	ACTIVE	PLACER	11/18/2015	21 0040N 0320E 013	NW
NV101849726	NMC1118305	NMC1118199	LP 301	MINERAL	ACTIVE	PLACER	11/18/2015	21 0040N 0320E 013	NW

Serial Number	Legacy Serial Number	Legacy Lead File Number	Claim Name	County	Case Disposition	Claim Type	Date Of Location	Mer. Twp. Rng. Sec.	Quad.
NV101849727	NMC1118306	NMC1118199	LP 302	MINERAL	ACTIVE	PLACER	11/18/2015	21 0040N 0320E 013	NW
NV101890437	NMC1132183	NMC1132183	LP 525	MINERAL	ACTIVE	PLACER	8/13/2016	21 0040N 0330E 009	SE
NV101890438	NMC1132184	NMC1132183	LP 526	MINERAL	ACTIVE	PLACER	8/13/2016	21 0040N 0330E 009	SE
NV101890439	NMC1132185	NMC1132183	LP 527	MINERAL	ACTIVE	PLACER	8/13/2016	21 0040N 0330E 009	SE
NV101890440	NMC1132186	NMC1132183	LP 552	MINERAL	ACTIVE	PLACER	8/13/2016	21 0040N 0320E 024	SE
NV101890441	NMC1132187	NMC1132183	LP 553	MINERAL	ACTIVE	PLACER	8/13/2016	21 0040N 0320E 024	SE
NV101890442	NMC1132188	NMC1132183	LP 554	MINERAL	ACTIVE	PLACER	8/13/2016	21 0040N 0320E 024	SE
NV101890698	NMC1133585	NMC1133578	LP 636	MINERAL	ACTIVE	PLACER	11/4/2016	21 0040N 0320E 015	NE
NV101890699	NMC1133586	NMC1133578	LP 637	MINERAL	ACTIVE	PLACER	11/4/2016	21 0040N 0320E 015	NE
NV101890700	NMC1133587	NMC1133578	LP 638	MINERAL	ACTIVE	PLACER	11/4/2016	21 0040N 0320E 014	NW
NV101890701	NMC1133588	NMC1133578	LP 639	MINERAL	ACTIVE	PLACER	11/4/2016	21 0040N 0320E 014	NW
NV101890702	NMC1133589	NMC1133578	LP 640	MINERAL	ACTIVE	PLACER	11/4/2016	21 0040N 0320E 015	SE
NV101890703	NMC1133590	NMC1133578	LP 641	MINERAL	ACTIVE	PLACER	11/4/2016	21 0040N 0320E 015	SE
NV101890704	NMC1133591	NMC1133578	LP 642	MINERAL	ACTIVE	PLACER	11/4/2016	21 0040N 0320E 015	SE
NV101890705	NMC1133592	NMC1133578	LP 643	MINERAL	ACTIVE	PLACER	11/4/2016	21 0040N 0320E 015	SE
NV101890706	NMC1133593	NMC1133578	LP 644	MINERAL	ACTIVE	PLACER	11/4/2016	21 0040N 0320E 015	SE
NV101890707	NMC1133594	NMC1133578	LP 645	MINERAL	ACTIVE	PLACER	11/4/2016	21 0040N 0320E 022	NE
NV101890708	NMC1133595	NMC1133578	LP 646	MINERAL	ACTIVE	PLACER	11/4/2016	21 0040N 0320E 022	NE
NV101890709	NMC1133596	NMC1133578	LP 647	MINERAL	ACTIVE	PLACER	11/4/2016	21 0040N 0320E 022	NE
NV101890710	NMC1133597	NMC1133578	LP 648	MINERAL	ACTIVE	PLACER	11/4/2016	21 0040N 0320E 022	NE
NV101890711	NMC1133598	NMC1133578	LP 649	MINERAL	ACTIVE	PLACER	11/4/2016	21 0040N 0320E 022	NE
NV101890712	NMC1133599	NMC1133578	LP 650	MINERAL	ACTIVE	PLACER	11/4/2016	21 0040N 0320E 022	NE
NV101890713	NMC1133600	NMC1133578	LP 659	MINERAL	ACTIVE	PLACER	11/3/2016	21 0040N 0320E 011	SW
NV101891706	NMC1132189	NMC1132183	LP 555	MINERAL	ACTIVE	PLACER	8/13/2016	21 0040N 0330E 019	SW
NV101891707	NMC1132190	NMC1132183	LP 556	MINERAL	ACTIVE	PLACER	8/13/2016	21 0040N 0330E 019	sw
NV101891708	NMC1132191	NMC1132183	LP 557	MINERAL	ACTIVE	PLACER	8/13/2016	21 0040N 0330E 019	sw
NV101891709	NMC1132192	NMC1132183	LP 558	MINERAL	ACTIVE	PLACER	8/13/2016	21 0040N 0330E 019	sw
NV101891801	NMC1132193	NMC1132183	LP 559	MINERAL	ACTIVE	PLACER	8/13/2016	21 0040N 0330E 019	SE
NV101891802	NMC1132194	NMC1132183	LP 560	MINERAL	ACTIVE	PLACER	8/13/2016	21 0040N 0320E 024	SE
1									

APPENDIX 2: Assay Certificates for the **2019 QP** Samples

Dahrouge Geological Consulting, Ltd. - 21030632

Western Environmental Testing Laboratory **Analytical Report**

Dahrouge Geological Consulting, Ltd. 10509 - 81 Ave NEW Suite #18 Edmonton, Alberta T6E-1X7 Attn: John Gorham/Neil McCallum Phone: 1(780)-984-1317 Fax: NoFax PO\Project: Dasin-Teels Marsh

Date Printed: 3/31/2021 OrderID:

21030632

Customer Sample ID: WETLAB Sample ID:	TM21-01A 21030632-001						3/17/2021 09:15 3/18/2021 14:51	
Analyte	Method	Resul	ts	Units	DF	RL	Analyzed	LabID
Trace Metals (Soil/Solid	ls/Sediment) by ICP-OES							
Aluminum	SW846 6010B	12000		mg/kg	224.5	34	3/24/2021	NV0092:
Antimony	SW846 6010B	ND	D	mg/kg	224.5	5.6	3/24/2021	NV0092:
Arsenic	SW846 6010B	ND	D	mg/kg	224.5	11	3/24/2021	NV0092
Barium	SW846 6010B	120		mg/kg	224.5	4.5	3/24/2021	NV0092.
Beryllium	SW846 6010B	ND	D	mg/kg	224.5	0.45	3/25/2021	NV0092
Bismuth	SW846 6010B	ND	D	mg/kg	224.5	22	3/24/2021	NV0092
Boron	SW846 6010B	1000		mg/kg	224.5	22	3/25/2021	NV0092
Cadmium	SW846 6010B	ND	D	mg/kg	224.5	0.45	3/24/2021	NV0092
Calcium	SW846 6010B	6500		mg/kg	224.5	450	3/24/2021	NV0092
Chromium	SW846 6010B	4.5		mg/kg	224.5	1.1	3/24/2021	NV0092
Cobalt	SW846 6010B	ND	D	mg/kg	224.5	3.4	3/24/2021	NV0092
Copper	SW846 6010B	ND	D	mg/kg	224.5	11	3/24/2021	NV0092
Gallium	SW846 6010B	ND	D	mg/kg	224.5	22	3/24/2021	NV0092
Iron	SW846 6010B	11000		mg/kg	224.5	110	3/24/2021	NV0092
Lead	SW846 6010B	9.3		mg/kg	224.5	4.5	3/24/2021	NV0092
Lithium	SW846 6010B	180		mg/kg	224.5	22	3/24/2021	NV0092
Magnesium	SW846 6010B	2800		mg/kg	224.5	340	3/24/2021	NV0092
Manganese	SW846 6010B	390		mg/kg	224.5	4.5	3/24/2021	NV0092
Molybdenum	SW846 6010B	ND	D	mg/kg	224.5	11	3/24/2021	NV0092
Nickel	SW846 6010B	ND	D	mg/kg	224.5	11	3/24/2021	NV0092
Phosphorus	SW846 6010B	420		mg/kg	224.5	110	3/24/2021	NV0092.
Potassium	SW846 6010B	8000		mg/kg	224.5	220	3/24/2021	NV0092.
Scandium	SW846 6010B	ND	D	mg/kg	224.5	22	3/24/2021	NV0092
Selenium	SW846 6010B	ND	D	mg/kg	224.5	11	3/24/2021	NV0092:
Silver	SW846 6010B	ND	D	mg/kg	224.5	6.7	3/24/2021	NV0092:
Sodium	SW846 6010B	25000		mg/kg	224.5	220	3/25/2021	NV0092
Strontium	SW846 6010B	83		mg/kg	224.5	22	3/24/2021	NV0092:
Thallium	SW846 6010B	12		mg/kg	224.5	9.0	3/24/2021	NV0092
Tin	SW846 6010B	ND	D	mg/kg	224.5	22	3/24/2021	NV0092
Titanium	SW846 6010B	550		mg/kg	224.5	22	3/24/2021	NV0092
Vanadium	SW846 6010B	16		mg/kg	224.5	2.2	3/24/2021	NV0092:
Zinc	SW846 6010B	27		mg/kg	224.5	11	3/24/2021	NV0092
Sample Preparation								
Trace Metals Digestion	EPA 3050B	\$2103	23-1A		1		3/23/2021	NV0092

DF=Dilution Factor, RL = Reporting Limit (minimum 3X the MDL), ND = Not Detected <RL or <MDL (if listed)

SPARKS
 SPARKS

 475 E. Greg Street, Suite 119

 Sparks, Nevada 89431

 tel (775) 355-0202

 fax (775) 355-0817

 EPA LAB ID: NV00925 - ELAP No: 2523

ELKO ELKO 1084 Lamoille Hwy Elko, Nevada 89801 tel (775) 777-9933 fax (775) 777-9933 EPA LAB ID: NV00926

LAS VEGAS LAS VEGAS 3230 Polaris Ave. Suite 4 Las Vegas, Nevada 89102 tel (702) 475-8899 fax (702) 622-2868 EPA LAB ID: NV00932

Page 3 of 24

Customer Sample ID: WETLAB Sample ID:	TM21-01B 21030632-002						3/17/2021 09:20 3/18/2021 14:51	
Analyte	Method	Result	s	Units	DF	RL	Analyzed	LabID
Trace Metals (Soil/Solid	s/Sediment) by ICP-OES							
Aluminum	SW846 6010B	12000	SC	mg/kg	241.8	36	3/24/2021	NV00925
Antimony	SW846 6010B	ND	D,M	mg/kg	241.8	6.0	3/24/2021	NV00925
Arsenic	SW846 6010B	ND	D	mg/kg	241.8	12	3/24/2021	NV00925
Barium	SW846 6010B	120		mg/kg	241.8	4.8	3/24/2021	NV00925
Beryllium	SW846 6010B	ND	D	mg/kg	241.8	0.48	3/25/2021	NV00925
Bismuth	SW846 6010B	ND	D,M	mg/kg	241.8	24	3/24/2021	NV00925
Boron	SW846 6010B	2400	SC	mg/kg	241.8	24	3/25/2021	NV00925
Cadmium	SW846 6010B	ND	D	mg/kg	241.8	0.48	3/24/2021	NV00925
Calcium	SW846 6010B	11000	SC	mg/kg	241.8	480	3/24/2021	NV00925
Chromium	SW846 6010B	4.9		mg/kg	241.8	1.2	3/24/2021	NV00925
Cobalt	SW846 6010B	ND	D	mg/kg	241.8	3.6	3/24/2021	NV00925
Copper	SW846 6010B	ND	D	mg/kg	241.8	12	3/24/2021	NV00925
Gallium	SW846 6010B	ND	D	mg/kg	241.8	24	3/24/2021	NV00925
Iron	SW846 6010B	10000	SC	mg/kg	241.8	120	3/24/2021	NV0092:
Lead	SW846 6010B	13		mg/kg	241.8	4.8	3/24/2021	NV0092:
Lithium	SW846 6010B	260	SC	mg/kg	241.8	24	3/24/2021	NV00925
Magnesium	SW846 6010B	3800	SC	mg/kg	241.8	360	3/24/2021	NV00923
Manganese	SW846 6010B	480	SC	mg/kg	241.8	4.8	3/24/2021	NV00925
Molybdenum	SW846 6010B	ND	D	mg/kg	241.8	12	3/24/2021	NV00925
Nickel	SW846 6010B	ND	D	mg/kg	241.8	12	3/24/2021	NV00925
Phosphorus	SW846 6010B	280	М	mg/kg	241.8	120	3/24/2021	NV00925
Potassium	SW846 6010B	8300	SC	mg/kg	241.8	240	3/24/2021	NV00925
Scandium	SW846 6010B	ND	D	mg/kg	241.8	24	3/24/2021	NV00925
Selenium	SW846 6010B	ND	D	mg/kg	241.8	12	3/24/2021	NV00925
Silver	SW846 6010B	ND	D	mg/kg	241.8	7.3	3/24/2021	NV00925
Sodium	SW846 6010B	28000	SC	mg/kg	241.8	240	3/25/2021	NV00925
Strontium	SW846 6010B	210	SC	mg/kg	241.8	24	3/24/2021	NV00925
Thallium	SW846 6010B	11		mg/kg	241.8	9.7	3/24/2021	NV00923
Tin	SW846 6010B	ND	D	mg/kg	241.8	24	3/24/2021	NV00925
Titanium	SW846 6010B	500	\mathbf{SC}	mg/kg	241.8	24	3/24/2021	NV00925
Vanadium	SW846 6010B	15		mg/kg	241.8	2.4	3/24/2021	NV00923
Zinc	SW846 6010B	32		mg/kg	241.8	12	3/24/2021	NV00925
Sample Preparation								
Trace Metals Digestion	EPA 3050B	S2103	23-1P		1		3/23/2021	NV00925

SPARKS 475 E. Greg Street, Suite 119 Sparks, Nevada 89431 tel (775) 355-0202 fax (775) 355-0817 EPA LAB ID: NV00925 - ELAP No: 2523 ELKO 1084 Lamoille Hwy Elko, Nevada 89801 tel (775) 777-9933 fax (775) 777-9933 EPA LAB ID: NV00926 LAS VEGAS 3230 Polaris Ave. Suite 4 Las Vegas, Nevada 89102 tel (702) 475-8899 fax (702) 622-2868 EPA LAB ID: NV00932

Page 4 of 24

Customer Sample ID: WETLAB Sample ID:	TM21-01C 21030632-003						8/17/2021 09:32 8/18/2021 14:51	
Analyte	Method	Result	s	Units	DF	RL	Analyzed	LabID
Trace Metals (Soil/Solid	s/Sediment) by ICP-OES							
Aluminum	SW846 6010B	16000		mg/kg	223	33	3/24/2021	NV00925
Antimony	SW846 6010B	ND	D	mg/kg	223	5.6	3/24/2021	NV00925
Arsenic	SW846 6010B	ND	D	mg/kg	223	11	3/24/2021	NV00925
Barium	SW846 6010B	120		mg/kg	223	4.5	3/24/2021	NV00925
Beryllium	SW846 6010B	0.47		mg/kg	223	0.45	3/25/2021	NV00925
Bismuth	SW846 6010B	ND	D	mg/kg	223	22	3/24/2021	NV00925
Boron	SW846 6010B	740		mg/kg	223	22	3/25/2021	NV00925
Cadmium	SW846 6010B	ND	D	mg/kg	223	0.45	3/24/2021	NV00925
Calcium	SW846 6010B	11000		mg/kg	223	450	3/24/2021	NV00925
Chromium	SW846 6010B	4.7		mg/kg	223	1.1	3/24/2021	NV00925
Cobalt	SW846 6010B	3.6		mg/kg	223	3.3	3/24/2021	NV00925
Copper	SW846 6010B	ND	D	mg/kg	223	11	3/24/2021	NV00925
Gallium	SW846 6010B	ND	D	mg/kg	223	22	3/24/2021	NV0092:
Iron	SW846 6010B	13000		mg/kg	223	110	3/24/2021	NV0092:
Lead	SW846 6010B	19		mg/kg	223	4.5	3/24/2021	NV0092:
Lithium	SW846 6010B	220		mg/kg	223	22	3/24/2021	NV0092:
Magnesium	SW846 6010B	5500		mg/kg	223	330	3/24/2021	NV0092:
Manganese	SW846 6010B	870		mg/kg	223	4.5	3/24/2021	NV00925
Molybdenum	SW846 6010B	ND	D	mg/kg	223	11	3/24/2021	NV0092
Nickel	SW846 6010B	ND	D	mg/kg	223	11	3/24/2021	NV0092:
Phosphorus	SW846 6010B	240		mg/kg	223	110	3/24/2021	NV00925
Potassium	SW846 6010B	11000		mg/kg	223	220	3/24/2021	NV00925
Scandium	SW846 6010B	ND	D	mg/kg	223	22	3/24/2021	NV00925
Selenium	SW846 6010B	ND	D	mg/kg	223	11	3/24/2021	NV0092
Silver	SW846 6010B	ND	D	mg/kg	223	6.7	3/24/2021	NV00923
Sodium	SW846 6010B	25000		mg/kg	223	220	3/25/2021	NV00925
Strontium	SW846 6010B	130		mg/kg	223	22	3/24/2021	NV00923
Thallium	SW846 6010B	11		mg/kg	223	8.9	3/24/2021	NV00923
Tin	SW846 6010B	ND	D	mg/kg	223	22	3/24/2021	NV00925
Titanium	SW846 6010B	610		mg/kg	223	22	3/24/2021	NV00923
Vanadium	SW846 6010B	16		mg/kg	223	2.2	3/24/2021	NV00923
Zinc	SW846 6010B	46		mg/kg	223	11	3/24/2021	NV0092:
Sample Preparation								
Trace Metals Digestion	EPA 3050B	S2103	3-1P		1		3/23/2021	NV00925

SPARKS 475 E. Greg Street, Suite 119 Sparks, Nevada 89431 tel (775) 355-0202 fax (775) 355-0817 EPA LAB ID: NV00925 - ELAP No: 2523 ELKO 1084 Lamoille Hwy Elko, Nevada 89801 tel (775) 777-9933 fax (775) 777-9933 EPA LAB ID: NV00926 LAS VEGAS 3230 Polaris Ave. Suite 4 Las Vegas, Nevada 89102 tel (702) 475-8899 fax (702) 622-2868 EPA LAB ID: NV00932

Page 5 of 24

Customer Sample ID: WETLAB Sample ID:	TM21-01D 21030632-004						3/17/2021 09:40 3/18/2021 14:51	
Analyte	Method	Result	5	Units	DF	RL	Analyzed	LabID
Trace Metals (Soil/Solid	ls/Sediment) by ICP-OES							
Aluminum	SW846 6010B	21000		mg/kg	222	33	3/24/2021	NV00925
Antimony	SW846 6010B	ND	D	mg/kg	222	5.5	3/24/2021	NV00925
Arsenic	SW846 6010B	ND	D	mg/kg	222	11	3/24/2021	NV00925
Barium	SW846 6010B	140		mg/kg	222	4.4	3/24/2021	NV00925
Beryllium	SW846 6010B	0.59		mg/kg	222	0.44	3/25/2021	NV00925
Bismuth	SW846 6010B	ND	D	mg/kg	222	22	3/24/2021	NV00925
Boron	SW846 6010B	480		mg/kg	222	22	3/25/2021	NV00925
Cadmium	SW846 6010B	ND	D	mg/kg	222	0.44	3/24/2021	NV00925
Calcium	SW846 6010B	8100		mg/kg	222	440	3/24/2021	NV00925
Chromium	SW846 6010B	11		mg/kg	222	1.1	3/24/2021	NV00925
Cobalt	SW846 6010B	5.8		mg/kg	222	3.3	3/24/2021	NV00925
Copper	SW846 6010B	20		mg/kg	222	11	3/24/2021	NV00925
Gallium	SW846 6010B	ND	D	mg/kg	222	22	3/24/2021	NV00925
Iron	SW846 6010B	20000		mg/kg	222	110	3/24/2021	NV00923
Lead	SW846 6010B	20		mg/kg	222	4.4	3/24/2021	NV0092:
Lithium	SW846 6010B	300		mg/kg	222	22	3/24/2021	NV0092:
Magnesium	SW846 6010B	7000		mg/kg	222	330	3/24/2021	NV00923
Manganese	SW846 6010B	700		mg/kg	222	4.4	3/24/2021	NV00925
Molybdenum	SW846 6010B	ND	D	mg/kg	222	11	3/24/2021	NV00925
Nickel	SW846 6010B	17		mg/kg	222	11	3/24/2021	NV00925
Phosphorus	SW846 6010B	210		mg/kg	222	110	3/24/2021	NV00925
Potassium	SW846 6010B	16000		mg/kg	222	220	3/24/2021	NV00925
Scandium	SW846 6010B	ND	D	mg/kg	222	22	3/24/2021	NV00925
Selenium	SW846 6010B	ND	D	mg/kg	222	11	3/24/2021	NV00925
Silver	SW846 6010B	ND	D	mg/kg	222	6.7	3/24/2021	NV00925
Sodium	SW846 6010B	31000		mg/kg	222	220	3/25/2021	NV00925
Strontium	SW846 6010B	110		mg/kg	222	22	3/24/2021	NV00925
Thallium	SW846 6010B	15		mg/kg	222	8.9	3/24/2021	NV00923
Tin	SW846 6010B	ND	D	mg/kg	222	22	3/24/2021	NV00925
Titanium	SW846 6010B	670		mg/kg	222	22	3/25/2021	NV00925
Vanadium	SW846 6010B	20		mg/kg	222	2.2	3/24/2021	NV00923
Zinc	SW846 6010B	55		mg/kg	222	11	3/24/2021	NV0092:
Sample Preparation								
Trace Metals Digestion	EPA 3050B	S2103	3.10		1		3/23/2021	NV00925

SPARKS 475 E. Greg Street, Suite 119 Sparks, Nevada 89431 tel (775) 355-0202 fax (775) 355-0817 EPA LAB ID: NV00925 - ELAP No: 2523 ELKO 1084 Lamoille Hwy Elko, Nevada 89801 tel (775) 777-9933 fax (775) 777-9933 EPA LAB ID: NV00926 LAS VEGAS 3230 Polaris Ave. Suite 4 Las Vegas, Nevada 89102 tel (702) 475-8899 fax (702) 622-2868 EPA LAB ID: NV00932

Page 6 of 24

Customer Sample ID: WETLAB Sample ID:	TM21-01E 21030632-005						3/17/2021 09:50 3/18/2021 14:51	
Analyte	Method	Result	s	Units	DF	RL	Analyzed	LabID
Trace Metals (Soil/Solid	s/Sediment) by ICP-OES							
Aluminum	SW846 6010B	20000		mg/kg	203.2	30	3/24/2021	NV00925
Antimony	SW846 6010B	ND	D	mg/kg	203.2	5.1	3/24/2021	NV00925
Arsenic	SW846 6010B	ND	D	mg/kg	203.2	10	3/24/2021	NV00925
Barium	SW846 6010B	160		mg/kg	203.2	4.1	3/24/2021	NV00925
Beryllium	SW846 6010B	ND	D	mg/kg	406.4	0.81	3/25/2021	NV00925
Bismuth	SW846 6010B	ND	D	mg/kg	203.2	20	3/24/2021	NV00925
Boron	SW846 6010B	540		mg/kg	406.4	41	3/25/2021	NV00925
Cadmium	SW846 6010B	ND	D	mg/kg	203.2	0.41	3/24/2021	NV00925
Calcium	SW846 6010B	9600		mg/kg	203.2	410	3/24/2021	NV00925
Chromium	SW846 6010B	12		mg/kg	203.2	1.0	3/24/2021	NV00925
Cobalt	SW846 6010B	5.9		mg/kg	203.2	3.0	3/24/2021	NV00925
Copper	SW846 6010B	21		mg/kg	203.2	10	3/24/2021	NV00925
Gallium	SW846 6010B	ND	D	mg/kg	203.2	20	3/24/2021	NV0092:
Iron	SW846 6010B	20000		mg/kg	406.4	200	3/25/2021	NV0092:
Lead	SW846 6010B	17		mg/kg	203.2	4.1	3/24/2021	NV0092:
Lithium	SW846 6010B	350		mg/kg	203.2	20	3/24/2021	NV0092:
Magnesium	SW846 6010B	7700		mg/kg	203.2	300	3/24/2021	NV0092:
Manganese	SW846 6010B	680		mg/kg	203.2	4.1	3/24/2021	NV00925
Molybdenum	SW846 6010B	ND	D	mg/kg	203.2	10	3/24/2021	NV00923
Nickel	SW846 6010B	18		mg/kg	203.2	10	3/24/2021	NV00925
Phosphorus	SW846 6010B	210		mg/kg	203.2	100	3/24/2021	NV00925
Potassium	SW846 6010B	18000		mg/kg	203.2	200	3/24/2021	NV00925
Scandium	SW846 6010B	ND	D	mg/kg	203.2	20	3/24/2021	NV00925
Selenium	SW846 6010B	ND	D	mg/kg	203.2	10	3/24/2021	NV00923
Silver	SW846 6010B	ND	D	mg/kg	203.2	6.1	3/24/2021	NV00923
Sodium	SW846 6010B	30000		mg/kg	406.4	410	3/25/2021	NV00923
Strontium	SW846 6010B	120		mg/kg	203.2	20	3/24/2021	NV00923
Thallium	SW846 6010B	18		mg/kg	203.2	8.1	3/24/2021	NV0092:
Tin	SW846 6010B	ND	D	mg/kg	203.2	20	3/24/2021	NV00925
Titanium	SW846 6010B	780		mg/kg	406.4	41	3/25/2021	NV00923
Vanadium	SW846 6010B	25		mg/kg	203.2	2.0	3/24/2021	NV00923
Zinc	SW846 6010B	55		mg/kg	203.2	10	3/24/2021	NV0092:
Sample Preparation				- 09550650				
Trace Metals Digestion	EPA 3050B	S21032	23-1B		1		3/23/2021	NV00925

SPARKS 475 E. Greg Street, Suite 119 Sparks, Nevada 89431 tel (775) 355-0202 fax (775) 355-0817 EPA LAB ID: NV00925 - ELAP No: 2523 ELKO 1084 Lamoille Hwy Elko, Nevada 89801 tel (775) 777-9933 fax (775) 777-9933 EPA LAB ID: NV00926 LAS VEGAS 3230 Polaris Ave. Suite 4 Las Vegas, Nevada 89102 tel (702) 475-8899 fax (702) 622-2868 EPA LAB ID: NV00932

Page 7 of 24

Customer Sample ID: WETLAB Sample ID:	TM21-01F 21030632-006					/17/2021 13:00 /18/2021 14:51	
Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
Trace Metals by ICP-O	ES						
Aluminum	EPA 200.7	13.9	mg/L	20	1.00	3/26/2021	NV00925
Antimony	EPA 200.7	ND	mg/L	20	0.40	3/26/2021	NV00925
Arsenic	EPA 200.7	0.928	mg/L	20	0.800	3/26/2021	NV00925
Barium	EPA 200.7	ND	mg/L	20	0.40	3/26/2021	NV00925
Beryllium	EPA 200.7	ND	mg/L	20	0.020	3/26/2021	NV00925
Bismuth	EPA 200.7	ND	mg/L	20	2.0	3/26/2021	NV00925
Boron	EPA 200.7	267	mg/L	20	2.00	3/26/2021	NV00925
Cadmium	EPA 200.7	ND	mg/L	20	0.020	3/26/2021	NV00925
Calcium	EPA 200.7	10.2	mg/L	20	10.0	3/26/2021	NV00925
Chromium	EPA 200.7	ND	mg/L	20	0.10	3/26/2021	NV00925
Cobalt	EPA 200.7	ND	mg/L	20	0.20	3/26/2021	NV00925
Copper	EPA 200.7	ND	mg/L	20	0.80	3/26/2021	NV00925
Gallium	EPA 200.7	ND	mg/L	20	2.0	3/26/2021	NV00925
Iron	EPA 200.7	8.36	mg/L	20	2.00	3/26/2021	NV00923
Lead	EPA 200.7	ND	mg/L	20	0.20	3/26/2021	NV0092:
Lithium	EPA 200.7	74.9	mg/L	20	2.00	3/26/2021	NV00923
Magnesium	EPA 200.7	ND	mg/L	20	10	3/26/2021	NV0092:
Manganese	EPA 200.7	0.493	mg/L	20	0.200	3/26/2021	NV00925
Molybdenum	EPA 200.7	3.84	mg/L	20	0.400	3/26/2021	NV00923
Nickel	EPA 200.7	ND	mg/L	20	0.60	3/26/2021	NV00925
Phosphorus	EPA 200.7	ND	mg/L	20	10	3/26/2021	NV00925
Potassium	EPA 200.7	1670	mg/L	20	20.0	3/26/2021	NV00925
Scandium	EPA 200.7	ND	mg/L	20	2.0	3/26/2021	NV00925
Selenium	EPA 200.7	ND	mg/L	20	1.0	3/26/2021	NV00925
Silver	EPA 200.7	ND	mg/L	20	0.10	3/26/2021	NV00923
Sodium	EPA 200.7	52700 SC	mg/L	2000	3000	3/29/2021	NV00925
Strontium	EPA 200.7	ND	mg/L	20	2.0	3/26/2021	NV00925
Thallium	EPA 200.7	ND	mg/L	20	1.0	3/26/2021	NV00923
Tin	EPA 200.7	ND	mg/L	20	2.0	3/26/2021	NV00925
Titanium	EPA 200.7	ND	mg/L	20	2.0	3/26/2021	NV00925
Vanadium	EPA 200.7	ND	mg/L	20	0.20	3/26/2021	NV00923
Zinc	EPA 200.7	ND	mg/L	20	0.40	3/26/2021	NV0092;
Sample Preparation			400870234				
Trace Metals Digestion (I	Brine) EPA 200.2	W210325-1		1		3/25/2021	NV00925

SPARKS 475 E. Greg Street, Suite 119 Sparks, Nevada 89431 tel (775) 355-0202 fax (775) 355-0817 EPA LAB ID: NV00925 - ELAP No: 2523 ELKO 1084 Lamoille Hwy Elko, Nevada 89801 tel (775) 777-9933 fax (775) 777-9933 EPA LAB ID: NV00926 LAS VEGAS 3230 Polaris Ave. Suite 4 Las Vegas, Nevada 89102 tel (702) 475-8899 fax (702) 622-2868 EPA LAB ID: NV00932

Page 8 of 24

Customer Sample ID: WETLAB Sample ID:	TM21-01G 21030632-007			(2100 S 100 S 1	3/17/2021 14: 3/18/2021 14:	
Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
Trace Metals by ICP-O	ES						
Aluminum	EPA 200	.7 139	mg/L	20	1.00	3/26/2021	NV00925
Antimony	EPA 200	.7 ND	mg/L	20	0.40	3/26/2021	NV00925
Arsenic	EPA 200	.7 1.00	mg/L	20	0.800	3/26/2021	NV00925
Barium	EPA 200	.7 0.837	mg/L	20	0.400	3/26/2021	NV00925
Beryllium	EPA 200	.7 ND	mg/L	20	0.020	3/26/2021	NV00925
Bismuth	EPA 200	.7 ND	mg/L	20	2.0	3/26/2021	NV00925
Boron	EPA 200	.7 264	mg/L	20	2.00	3/26/2021	NV00925
Cadmium	EPA 200	.7 ND	mg/L	20	0.020	3/26/2021	NV00923
Calcium	EPA 200	.7 120	mg/L	20	10.0	3/26/2021	NV00923
Chromium	EPA 200	.7 ND	mg/L	20	0.10	3/26/2021	NV00925
Cobalt	EPA 200	.7 ND	mg/L	20	0.20	3/26/2021	NV00923
Copper	EPA 200	.7 ND	mg/L	20	0.80	3/26/2021	NV0092
Gallium	EPA 200	.7 ND	mg/L	20	2.0	3/26/2021	NV00925
Iron	EPA 200	.7 86.7	mg/L	20	2.00	3/26/2021	NV0092:
Lead	EPA 200	.7 0.308	mg/L	20	0.200	3/26/2021	NV0092:
Lithium	EPA 200	.7 76.0	mg/L	20	2.00	3/26/2021	NV0092:
Magnesium	EPA 200	.7 42.6	mg/L	20	10.0	3/26/2021	NV0092
Manganese	EPA 200	.7 5.90	mg/L	20	0.200	3/26/2021	NV00923
Molybdenum	EPA 200	.7 2.88	mg/L	20	0.400	3/26/2021	NV00925
Nickel	EPA 200	.7 ND	mg/L	20	0.60	3/26/2021	NV00925
Phosphorus	EPA 200	.7 ND	mg/L	20	10	3/26/2021	NV00925
Potassium	EPA 200	.7 1800	mg/L	20	20.0	3/26/2021	NV00925
Scandium	EPA 200	.7 ND	mg/L	20	2.0	3/26/2021	NV00925
Selenium	EPA 200	.7 ND	mg/L	20	1.0	3/26/2021	NV00925
Silver	EPA 200	.7 ND	mg/L	20	0.10	3/26/2021	NV00925
Sodium	EPA 200	.7 53700	mg/L	2000	3000	3/29/2021	NV00923
Strontium	EPA 200	.7 2.82	mg/L	20	2.00	3/26/2021	NV00923
Thallium	EPA 200	.7 ND	mg/L	20	1.0	3/26/2021	NV00923
Tin	EPA 200	.7 ND	mg/L	20	2.0	3/26/2021	NV00925
Titanium	EPA 200	.7 4.96	mg/L	20	2.00	3/26/2021	NV00923
Vanadium	EPA 200	.7 ND	mg/L	20	0.20	3/26/2021	NV00925
Zinc	EPA 200	.7 0.579	mg/L	20	0.400	3/26/2021	NV0092:
Sample Preparation							
Trace Metals Digestion (I	Brine) EPA 200	.2 W210325	-1	1		3/25/2021	NV00925

SPARKS 475 E. Greg Street, Suite 119 Sparks, Nevada 89431 tel (775) 355-0202 fax (775) 355-0817 EPA LAB ID: NV00925 - ELAP No: 2523 ELKO 1084 Lamoille Hwy Elko, Nevada 89801 tel (775) 777-9933 fax (775) 777-9933 EPA LAB ID: NV00926 LAS VEGAS 3230 Polaris Ave. Suite 4 Las Vegas, Nevada 89102 tel (702) 475-8899 fax (702) 622-2868 EPA LAB ID: NV00932

Page 9 of 24

Customer Sample ID: WETLAB Sample ID:	TM21-01H 21030632-008					/17/2021 15:15 /18/2021 14:51	
Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
Trace Metals by ICP-O	ES						
Aluminum	EPA 200.7	55.5	mg/L	20	1.00	3/26/2021	NV00925
Antimony	EPA 200.7	ND	mg/L	20	0.40	3/26/2021	NV00925
Arsenic	EPA 200.7	1.12	mg/L	20	0.800	3/26/2021	NV00925
Barium	EPA 200.7	ND	mg/L	20	0.40	3/26/2021	NV00925
Beryllium	EPA 200.7	ND	mg/L	20	0.020	3/26/2021	NV00925
Bismuth	EPA 200.7	ND	mg/L	20	2.0	3/26/2021	NV00925
Boron	EPA 200.7	274	mg/L	20	2.00	3/26/2021	NV00925
Cadmium	EPA 200.7	ND	mg/L	20	0.020	3/26/2021	NV00925
Calcium	EPA 200.7	29.1	mg/L	20	10.0	3/26/2021	NV00925
Chromium	EPA 200.7	ND	mg/L	20	0.10	3/26/2021	NV00925
Cobalt	EPA 200.7	ND	mg/L	20	0.20	3/26/2021	NV00925
Copper	EPA 200.7	ND	mg/L	20	0.80	3/26/2021	NV00925
Gallium	EPA 200.7	ND	mg/L	20	2.0	3/26/2021	NV00925
Iron	EPA 200.7	30.5	mg/L	20	2.00	3/26/2021	NV00925
Lead	EPA 200.7	ND	mg/L	20	0.20	3/26/2021	NV00925
Lithium	EPA 200.7	77.3	mg/L	20	2.00	3/26/2021	NV00925
Magnesium	EPA 200.7	15.4	mg/L	20	10.0	3/26/2021	NV00925
Manganese	EPA 200.7	2.04	mg/L	20	0.200	3/26/2021	NV00925
Molybdenum	EPA 200.7	3.38	mg/L	20	0.400	3/26/2021	NV00925
Nickel	EPA 200.7	ND	mg/L	20	0.60	3/26/2021	NV00925
Phosphorus	EPA 200.7	ND	mg/L	20	10	3/26/2021	NV00925
Potassium	EPA 200.7	1780	mg/L	20	20.0	3/26/2021	NV00925
Scandium	EPA 200.7	ND	mg/L	20	2.0	3/26/2021	NV00925
Selenium	EPA 200.7	ND	mg/L	20	1.0	3/26/2021	NV00925
Silver	EPA 200.7	ND	mg/L	20	0.10	3/26/2021	NV00925
Sodium	EPA 200.7	53800	mg/L	2000	3000	3/29/2021	NV00925
Strontium	EPA 200.7	ND	mg/L	20	2.0	3/26/2021	NV00925
Thallium	EPA 200.7	ND	mg/L	20	1.0	3/26/2021	NV00925
Tin	EPA 200.7	ND	mg/L	20	2.0	3/26/2021	NV00925
Titanium	EPA 200.7	ND	mg/L	20	2.0	3/26/2021	NV00925
Vanadium	EPA 200.7	ND	mg/L	20	0.20	3/26/2021	NV00925
Zine	EPA 200.7	ND	mg/L	20	0.40	3/26/2021	NV00925
Sample Preparation							
Trace Metals Digestion (I	Brine) EPA 200.2	W210325-1		1		3/25/2021	NV00925

SPARKS 475 E. Greg Street, Suite 119 Sparks, Nevada 89431 tel (775) 355-0202 fax (775) 355-0817 EPA LAB ID: NV00925 - ELAP No: 2523 ELKO 1084 Lamoille Hwy Elko, Nevada 89801 tel (775) 777-9933 fax (775) 777-9933 EPA LAB ID: NV00926 LAS VEGAS 3230 Polaris Ave. Suite 4 Las Vegas, Nevada 89102 tel (702) 475-8899 fax (702) 622-2868 EPA LAB ID: NV00932

Page 10 of 24

Customer Sample ID: WETLAB Sample ID:	TM21-02A 21030632-009						3/17/2021 12:00 3/18/2021 14:51	
Analyte	Method	Result	s	Units	DF	RL	Analyzed	LabID
Trace Metals (Soil/Solid	s/Sediment) by ICP-OES							
Aluminum	SW846 6010B	15000		mg/kg	231.8	35	3/24/2021	NV00925
Antimony	SW846 6010B	ND	D	mg/kg	231.8	5.8	3/24/2021	NV00925
Arsenic	SW846 6010B	ND	D	mg/kg	231.8	12	3/24/2021	NV00925
Barium	SW846 6010B	120		mg/kg	231.8	4.6	3/24/2021	NV00925
Beryllium	SW846 6010B	0.48		mg/kg	231.8	0.46	3/25/2021	NV00925
Bismuth	SW846 6010B	ND	D	mg/kg	231.8	23	3/24/2021	NV00925
Boron	SW846 6010B	1300		mg/kg	231.8	23	3/25/2021	NV00925
Cadmium	SW846 6010B	ND	D	mg/kg	231.8	0.46	3/24/2021	NV00925
Calcium	SW846 6010B	10000		mg/kg	231,8	460	3/24/2021	NV00925
Chromium	SW846 6010B	4.7		mg/kg	231.8	1.2	3/24/2021	NV00925
Cobalt	SW846 6010B	ND	D	mg/kg	231.8	3.5	3/24/2021	NV00925
Copper	SW846 6010B	ND	D	mg/kg	231.8	12	3/24/2021	NV00925
Gallium	SW846 6010B	ND	D	mg/kg	231.8	23	3/24/2021	NV0092:
Iron	SW846 6010B	14000		mg/kg	231.8	120	3/24/2021	NV0092:
Lead	SW846 6010B	26		mg/kg	231.8	4.6	3/24/2021	NV0092:
Lithium	SW846 6010B	210		mg/kg	231.8	23	3/24/2021	NV0092:
Magnesium	SW846 6010B	5100		mg/kg	231.8	350	3/24/2021	NV0092:
Manganese	SW846 6010B	850		mg/kg	231.8	4.6	3/24/2021	NV00923
Molybdenum	SW846 6010B	ND	D	mg/kg	231.8	12	3/24/2021	NV00923
Nickel	SW846 6010B	ND	D	mg/kg	231.8	12	3/24/2021	NV00925
Phosphorus	SW846 6010B	300		mg/kg	231.8	120	3/24/2021	NV00925
Potassium	SW846 6010B	10000		mg/kg	231.8	230	3/24/2021	NV00925
Scandium	SW846 6010B	ND	D	mg/kg	231.8	23	3/24/2021	NV00925
Selenium	SW846 6010B	ND	D	mg/kg	231.8	12	3/24/2021	NV00923
Silver	SW846 6010B	ND	D	mg/kg	231.8	7.0	3/24/2021	NV00923
Sodium	SW846 6010B	24000		mg/kg	231.8	230	3/25/2021	NV00925
Strontium	SW846 6010B	140		mg/kg	231.8	23	3/24/2021	NV00923
Thallium	SW846 6010B	12		mg/kg	231.8	9.3	3/24/2021	NV00923
Tin	SW846 6010B	ND	D	mg/kg	231.8	23	3/24/2021	NV00925
Titanium	SW846 6010B	510		mg/kg	231.8	23	3/25/2021	NV00923
Vanadium	SW846 6010B	17		mg/kg	231.8	2.3	3/24/2021	NV0092:
Zinc	SW846 6010B	53		mg/kg	231.8	12	3/24/2021	NV0092;
Sample Preparation								
Trace Metals Digestion	EPA 3050B	S2103	3-1P		1		3/23/2021	NV00925

SPARKS 475 E. Greg Street, Suite 119 Sparks, Nevada 89431 tel (775) 355-0202 fax (775) 355-0817 EPA LAB ID: NV00925 - ELAP No: 2523 ELKO 1084 Lamoille Hwy Elko, Nevada 89801 tel (775) 777-9933 fax (775) 777-9933 EPA LAB ID: NV00926 LAS VEGAS 3230 Polaris Ave. Suite 4 Las Vegas, Nevada 89102 tel (702) 475-8899 fax (702) 622-2868 EPA LAB ID: NV00932

Page 11 of 24

Customer Sample ID: WETLAB Sample ID:	TM21-02B 21030632-010						3/17/2021 12:02 3/18/2021 14:51	
Analyte	Method	Result	s	Units	DF	RL	Analyzed	LabID
Trace Metals (Soil/Solid	s/Sediment) by ICP-OES							
Aluminum	SW846 6010B	16000		mg/kg	230.8	35	3/24/2021	NV00925
Antimony	SW846 6010B	ND	D	mg/kg	230.8	5.8	3/24/2021	NV00925
Arsenic	SW846 6010B	ND	D	mg/kg	230.8	12	3/24/2021	NV00925
Barium	SW846 6010B	120		mg/kg	230.8	4.6	3/24/2021	NV00925
Beryllium	SW846 6010B	ND	D	mg/kg	230.8	0.46	3/25/2021	NV00925
Bismuth	SW846 6010B	ND	D	mg/kg	230.8	23	3/24/2021	NV00925
Boron	SW846 6010B	380		mg/kg	230.8	23	3/25/2021	NV00925
Cadmium	SW846 6010B	ND	D	mg/kg	230.8	0.46	3/24/2021	NV00925
Calcium	SW846 6010B	8400		mg/kg	230.8	460	3/24/2021	NV00925
Chromium	SW846 6010B	5.7		mg/kg	230.8	1.2	3/24/2021	NV00925
Cobalt	SW846 6010B	ND	D	mg/kg	230.8	3.5	3/24/2021	NV00925
Copper	SW846 6010B	ND	D	mg/kg	230.8	12	3/24/2021	NV00925
Gallium	SW846 6010B	ND	D	mg/kg	230.8	23	3/24/2021	NV00925
Iron	SW846 6010B	14000		mg/kg	230.8	120	3/24/2021	NV0092:
Lead	SW846 6010B	22		mg/kg	230.8	4.6	3/24/2021	NV0092
Lithium	SW846 6010B	200		mg/kg	230.8	23	3/24/2021	NV00923
Magnesium	SW846 6010B	5000		mg/kg	230.8	350	3/24/2021	NV00923
Manganese	SW846 6010B	630		mg/kg	230.8	4.6	3/24/2021	NV00925
Molybdenum	SW846 6010B	ND	D	mg/kg	230.8	12	3/24/2021	NV00925
Nickel	SW846 6010B	ND	D	mg/kg	230.8	12	3/24/2021	NV0092
Phosphorus	SW846 6010B	240		mg/kg	230.8	120	3/24/2021	NV00925
Potassium	SW846 6010B	14000		mg/kg	230.8	230	3/24/2021	NV00925
Scandium	SW846 6010B	ND	D	mg/kg	230.8	23	3/24/2021	NV00925
Selenium	SW846 6010B	ND	D	mg/kg	230.8	12	3/24/2021	NV00925
Silver	SW846 6010B	ND	D	mg/kg	230.8	6.9	3/24/2021	NV00925
Sodium	SW846 6010B	24000		mg/kg	230.8	230	3/25/2021	NV00925
Strontium	SW846 6010B	120		mg/kg	230.8	23	3/24/2021	NV00925
Thallium	SW846 6010B	12		mg/kg	230.8	9.2	3/24/2021	NV00923
Tin	SW846 6010B	ND	D	mg/kg	230.8	23	3/24/2021	NV00925
Titanium	SW846 6010B	470		mg/kg	230.8	23	3/25/2021	NV00925
Vanadium	SW846 6010B	17		mg/kg	230.8	2.3	3/24/2021	NV00923
Zinc	SW846 6010B	43		mg/kg	230.8	12	3/24/2021	NV0092:
Sample Preparation								
Trace Metals Digestion	EPA 3050B	S21032	3-1P		1		3/23/2021	NV00925

SPARKS 475 E. Greg Street, Suite 119 Sparks, Nevada 89431 tel (775) 355-0202 fax (775) 355-0817 EPA LAB ID: NV00925 - ELAP No: 2523 ELKO 1084 Lamoille Hwy Eiko, Nevada 89801 tel (775) 777-9933 fax (775) 777-9933 EPA LAB ID: NV00926 LAS VEGAS 3230 Polaris Ave. Suite 4 Las Vegas, Nevada 89102 tel (702) 475-8899 fax (702) 622-2868 EPA LAB ID: NV00932

Page 12 of 24

Customer Sample ID: WETLAB Sample ID:	TM21-02C 21030632-011						3/17/2021 12:05 3/18/2021 14:51	
Analyte	Method	Result	s	Units	DF	RL	Analyzed	LabID
Trace Metals (Soil/Solid	s/Sediment) by ICP-OES							
Aluminum	SW846 6010B	19000		mg/kg	234.8	35	3/24/2021	NV00925
Antimony	SW846 6010B	ND	D	mg/kg	234.8	5.9	3/24/2021	NV00925
Arsenic	SW846 6010B	ND	D	mg/kg	234.8	12	3/24/2021	NV00925
Barium	SW846 6010B	160		mg/kg	234.8	4.7	3/24/2021	NV00925
Beryllium	SW846 6010B	0.62		mg/kg	234.8	0.47	3/25/2021	NV00925
Bismuth	SW846 6010B	ND	D	mg/kg	234.8	23	3/24/2021	NV00925
Boron	SW846 6010B	310		mg/kg	234.8	23	3/25/2021	NV00925
Cadmium	SW846 6010B	ND	D	mg/kg	234.8	0.47	3/24/2021	NV00923
Calcium	SW846 6010B	8000		mg/kg	234.8	470	3/24/2021	NV00925
Chromium	SW846 6010B	5.1		mg/kg	234.8	1.2	3/24/2021	NV00925
Cobalt	SW846 6010B	3.9		mg/kg	234.8	3.5	3/24/2021	NV00925
Copper	SW846 6010B	ND	D	mg/kg	234.8	12	3/24/2021	NV00925
Gallium	SW846 6010B	ND	D	mg/kg	234.8	23	3/24/2021	NV0092:
Iron	SW846 6010B	15000		mg/kg	234.8	120	3/24/2021	NV0092:
Lead	SW846 6010B	24		mg/kg	234.8	4.7	3/24/2021	NV0092:
Lithium	SW846 6010B	160		mg/kg	234.8	23	3/24/2021	NV0092:
Magnesium	SW846 6010B	5700		mg/kg	234.8	350	3/24/2021	NV0092:
Manganese	SW846 6010B	950		mg/kg	234.8	4.7	3/24/2021	NV0092:
Molybdenum	SW846 6010B	ND	D	mg/kg	234.8	12	3/24/2021	NV0092:
Nickel	SW846 6010B	ND	D	mg/kg	234.8	12	3/24/2021	NV0092:
Phosphorus	SW846 6010B	220		mg/kg	234.8	120	3/24/2021	NV00925
Potassium	SW846 6010B	14000		mg/kg	234.8	230	3/24/2021	NV00925
Scandium	SW846 6010B	ND	D	mg/kg	234.8	23	3/24/2021	NV00925
Selenium	SW846 6010B	ND	D	mg/kg	234.8	12	3/24/2021	NV00923
Silver	SW846 6010B	ND	D	mg/kg	234.8	7.0	3/24/2021	NV00923
Sodium	SW846 6010B	26000		mg/kg	234.8	230	3/25/2021	NV00925
Strontium	SW846 6010B	75		mg/kg	234.8	23	3/24/2021	NV00923
Thallium	SW846 6010B	12		mg/kg	234.8	9.4	3/24/2021	NV0092:
Tin	SW846 6010B	ND	D	mg/kg	234.8	23	3/24/2021	NV00925
Titanium	SW846 6010B	490		mg/kg	234.8	23	3/25/2021	NV00923
Vanadium	SW846 6010B	17		mg/kg	234.8	2.3	3/24/2021	NV0092:
Zinc	SW846 6010B	52		mg/kg	234.8	12	3/24/2021	NV0092:
Sample Preparation								
Trace Metals Digestion	EPA 3050B	S2103	23-1P		1		3/23/2021	NV00925

SPARKS 475 E. Greg Street, Suite 119 Sparks, Nevada 89431 tel (775) 355-0202 fax (775) 355-0817 EPA LAB ID: NV00925 - ELAP No: 2523 ELKO 1084 Lamoille Hwy Elko, Nevada 89801 tel (775) 777-9933 fax (775) 777-9933 EPA LAB ID: NV00926 LAS VEGAS 3230 Polaris Ave. Suite 4 Las Vegas, Nevada 89102 tel (702) 475-8899 fax (702) 622-2868 EPA LAB ID: NV00932

Page 13 of 24

Customer Sample ID: WETLAB Sample ID:	TM21-02D 21030632-012						3/17/2021 12:20 3/18/2021 14:51	
Analyte	Method	Result	5	Units	DF	RL	Analyzed	LabID
Trace Metals (Soil/Solid	s/Sediment) by ICP-OES							
Aluminum	SW846 6010B	19000		mg/kg	231.6	35	3/24/2021	NV00925
Antimony	SW846 6010B	ND	D	mg/kg	231.6	5.8	3/24/2021	NV00925
Arsenic	SW846 6010B	ND	D	mg/kg	231.6	12	3/24/2021	NV00925
Barium	SW846 6010B	140		mg/kg	231.6	4.6	3/24/2021	NV00925
Beryllium	SW846 6010B	ND	D	mg/kg	231.6	0.46	3/25/2021	NV00925
Bismuth	SW846 6010B	ND	D	mg/kg	231.6	23	3/24/2021	NV00925
Boron	SW846 6010B	720		mg/kg	231.6	23	3/25/2021	NV00925
Cadmium	SW846 6010B	ND	D	mg/kg	231.6	0.46	3/24/2021	NV00925
Calcium	SW846 6010B	8100		mg/kg	231.6	460	3/24/2021	NV00925
Chromium	SW846 6010B	11		mg/kg	231.6	1.2	3/24/2021	NV00925
Cobalt	SW846 6010B	5.8		mg/kg	231.6	3.5	3/24/2021	NV00925
Copper	SW846 6010B	20		mg/kg	231.6	12	3/24/2021	NV00925
Gallium	SW846 6010B	ND	D	mg/kg	231.6	23	3/24/2021	NV00925
Iron	SW846 6010B	19000		mg/kg	231.6	120	3/24/2021	NV00923
Lead	SW846 6010B	20		mg/kg	231.6	4.6	3/24/2021	NV0092:
Lithium	SW846 6010B	260		mg/kg	231.6	23	3/24/2021	NV00925
Magnesium	SW846 6010B	7100		mg/kg	231.6	350	3/24/2021	NV00925
Manganese	SW846 6010B	660		mg/kg	231.6	4.6	3/24/2021	NV00925
Molybdenum	SW846 6010B	ND	D	mg/kg	231.6	12	3/24/2021	NV00925
Nickel	SW846 6010B	17		mg/kg	231.6	12	3/24/2021	NV00925
Phosphorus	SW846 6010B	210		mg/kg	231.6	120	3/24/2021	NV00925
Potassium	SW846 6010B	16000		mg/kg	231.6	230	3/24/2021	NV00925
Scandium	SW846 6010B	ND	D	mg/kg	231.6	23	3/24/2021	NV00925
Selenium	SW846 6010B	ND	D	mg/kg	231.6	12	3/24/2021	NV00925
Silver	SW846 6010B	ND	D	mg/kg	231.6	6.9	3/24/2021	NV00925
Sodium	SW846 6010B	34000		mg/kg	231.6	230	3/25/2021	NV00925
Strontium	SW846 6010B	110		mg/kg	231.6	23	3/24/2021	NV00925
Thallium	SW846 6010B	16		mg/kg	231.6	9.3	3/24/2021	NV00923
Tin	SW846 6010B	ND	D	mg/kg	231.6	23	3/24/2021	NV00925
Titanium	SW846 6010B	710		mg/kg	231.6	23	3/25/2021	NV00925
Vanadium	SW846 6010B	21		mg/kg	231.6	2.3	3/24/2021	NV00923
Zinc	SW846 6010B	55		mg/kg	231.6	12	3/24/2021	NV00925
Sample Preparation								
Trace Metals Digestion	EPA 3050B	S2103	3.10		1		3/23/2021	NV00925

SPARKS 475 E. Greg Street, Suite 119 Sparks, Nevada 89431 tel (775) 355-0202 fax (775) 355-0817 EPA LAB ID: NV00925 - ELAP No: 2523 ELKO 1084 Lamoille Hwy Elko, Nevada 89801 tel (775) 777-9933 fax (775) 777-9933 EPA LAB ID: NV00926 LAS VEGAS 3230 Polaris Ave. Suite 4 Las Vegas, Nevada 89102 tel (702) 475-8899 fax (702) 622-2868 EPA LAB ID: NV00932

Page 14 of 24

Customer Sample ID: WETLAB Sample ID:	TM21-02E 21030632-013					2100 C 1000 C	3/17/2021 12:22 3/18/2021 14:51	
Analyte	Method	Result	5	Units	DF	RL	Analyzed	LabID
Trace Metals (Soil/Solid	s/Sediment) by ICP-OES							
Aluminum	SW846 6010B	17000		mg/kg	223.5	34	3/24/2021	NV00925
Antimony	SW846 6010B	ND	D	mg/kg	223.5	5.6	3/24/2021	NV00925
Arsenic	SW846 6010B	ND	D	mg/kg	223.5	11	3/24/2021	NV00925
Barium	SW846 6010B	130		mg/kg	223.5	4.5	3/24/2021	NV00925
Beryllium	SW846 6010B	ND	D	mg/kg	223.5	0.45	3/25/2021	NV00925
Bismuth	SW846 6010B	ND	D	mg/kg	223.5	22	3/24/2021	NV00925
Boron	SW846 6010B	830		mg/kg	223.5	22	3/25/2021	NV00925
Cadmium	SW846 6010B	ND	D	mg/kg	223.5	0.45	3/24/2021	NV00925
Calcium	SW846 6010B	6100		mg/kg	223.5	450	3/24/2021	NV00925
Chromium	SW846 6010B	9.6		mg/kg	223.5	1.1	3/24/2021	NV00925
Cobalt	SW846 6010B	4.8		mg/kg	223.5	3.4	3/24/2021	NV00925
Copper	SW846 6010B	18		mg/kg	223.5	11	3/24/2021	NV00925
Gallium	SW846 6010B	ND	D	mg/kg	223.5	22	3/24/2021	NV00925
Iron	SW846 6010B	17000		mg/kg	223.5	110	3/24/2021	NV00923
Lead	SW846 6010B	14		mg/kg	223.5	4.5	3/24/2021	NV0092:
Lithium	SW846 6010B	280		mg/kg	223.5	22	3/24/2021	NV0092:
Magnesium	SW846 6010B	6700		mg/kg	223.5	340	3/24/2021	NV00925
Manganese	SW846 6010B	540		mg/kg	223.5	4.5	3/24/2021	NV00925
Molybdenum	SW846 6010B	ND	D	mg/kg	223.5	11	3/24/2021	NV00925
Nickel	SW846 6010B	15		mg/kg	223.5	11	3/24/2021	NV00925
Phosphorus	SW846 6010B	170		mg/kg	223.5	110	3/24/2021	NV00925
Potassium	SW846 6010B	16000		mg/kg	223.5	220	3/24/2021	NV00925
Scandium	SW846 6010B	ND	D	mg/kg	223.5	22	3/24/2021	NV00925
Selenium	SW846 6010B	ND	D	mg/kg	223.5	11	3/24/2021	NV00925
Silver	SW846 6010B	ND	D	mg/kg	223.5	6.7	3/24/2021	NV00925
Sodium	SW846 6010B	37000		mg/kg	223.5	220	3/25/2021	NV00925
Strontium	SW846 6010B	89		mg/kg	223.5	22	3/24/2021	NV00925
Thallium	SW846 6010B	15		mg/kg	223.5	8.9	3/24/2021	NV00925
Tin	SW846 6010B	ND	D	mg/kg	223.5	22	3/24/2021	NV00925
Titanium	SW846 6010B	600		mg/kg	223.5	22	3/25/2021	NV00925
Vanadium	SW846 6010B	20		mg/kg	223.5	2.2	3/24/2021	NV00925
Zinc	SW846 6010B	44		mg/kg	223.5	11	3/24/2021	NV00925
Sample Preparation								
Trace Metals Digestion	EPA 3050B	S21032	23-1B		1		3/23/2021	NV00925

SPARKS 475 E. Greg Street, Suite 119 Sparks, Nevada 89431 tel (775) 355-0202 fax (775) 355-0817 EPA LAB ID: NV00925 - ELAP No: 2523 ELKO 1084 Lamoille Hwy Elko, Nevada 89801 tel (775) 777-9933 fax (775) 777-9933 EPA LAB ID: NV00926 LAS VEGAS 3230 Polaris Ave. Suite 4 Las Vegas, Nevada 89102 tel (702) 475-8899 fax (702) 622-2868 EPA LAB ID: NV00932

Page 15 of 24

Customer Sample ID: WETLAB Sample ID:	TM21-02F 21030632-014					8/17/2021 12:56 8/18/2021 14:51	
Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
Trace Metals by ICP-O	ES						
Aluminum	EPA 200.7	18.6	mg/L	20	1.00	3/26/2021	NV00925
Antimony	EPA 200.7	ND	mg/L	20	0.40	3/26/2021	NV00925
Arsenic	EPA 200.7	1.31	mg/L	20	0.800	3/26/2021	NV00925
Barium	EPA 200.7	ND	mg/L	20	0.40	3/26/2021	NV00925
Beryllium	EPA 200.7	ND	mg/L	20	0.020	3/26/2021	NV00925
Bismuth	EPA 200.7	ND	mg/L	20	2.0	3/26/2021	NV00925
Boron	EPA 200.7	281	mg/L	20	2.00	3/26/2021	NV00925
Cadmium	EPA 200.7	ND	mg/L	20	0.020	3/26/2021	NV00925
Calcium	EPA 200.7	ND	mg/L	20	10	3/26/2021	NV00925
Chromium	EPA 200.7	ND	mg/L	20	0.10	3/26/2021	NV00925
Cobalt	EPA 200.7	ND	mg/L	20	0.20	3/26/2021	NV00925
Copper	EPA 200.7	ND	mg/L	20	0.80	3/26/2021	NV00925
Gallium	EPA 200.7	ND	mg/L	20	2.0	3/26/2021	NV00925
Iron	EPA 200.7	10.6	mg/L	20	2.00	3/26/2021	NV00925
Lead	EPA 200.7	ND	mg/L	20	0.20	3/26/2021	NV00925
Lithium	EPA 200.7	72.7	mg/L	20	2.00	3/26/2021	NV00925
Magnesium	EPA 200.7	ND	mg/L	20	10	3/26/2021	NV00925
Manganese	EPA 200.7	0.546	mg/L	20	0.200	3/26/2021	NV00925
Molybdenum	EPA 200.7	2.52	mg/L	20	0.400	3/26/2021	NV00925
Nickel	EPA 200.7	ND	mg/L	20	0.60	3/26/2021	NV00925
Phosphorus	EPA 200.7	10.0	mg/L	20	10.0	3/26/2021	NV00925
Potassium	EPA 200.7	2130	mg/L	20	20.0	3/26/2021	NV00925
Scandium	EPA 200.7	ND	mg/L	20	2.0	3/26/2021	NV00925
Selenium	EPA 200.7	ND	mg/L	20	1.0	3/26/2021	NV00925
Silver	EPA 200.7	ND	mg/L	20	0.10	3/26/2021	NV00925
Sodium	EPA 200.7	53000	mg/L	2000	3000	3/29/2021	NV00925
Strontium	EPA 200.7	ND	mg/L	20	2.0	3/26/2021	NV00925
Thallium	EPA 200.7	ND	mg/L	20	1.0	3/26/2021	NV00925
Tin	EPA 200.7	ND	mg/L	20	2.0	3/26/2021	NV00925
Titanium	EPA 200.7	ND	mg/L	20	2.0	3/26/2021	NV00925
Vanadium	EPA 200.7	ND	mg/L	20	0.20	3/26/2021	NV00925
Zinc	EPA 200.7	ND	mg/L	20	0.40	3/26/2021	NV00925
Sample Preparation							
Trace Metals Digestion (I	Brine) EPA 200.2	W210325-1		1		3/25/2021	NV00925

SPARKS 475 E. Greg Street, Suite 119 Sparks, Nevada 89431 tel (775) 355-0202 fax (775) 355-0817 EPA LAB ID: NV00925 - ELAP No: 2523 ELKO 1084 Lamoille Hwy Elko, Nevada 89801 tel (775) 777-9933 fax (775) 777-9933 EPA LAB ID: NV00926 LAS VEGAS 3230 Polaris Ave. Suite 4 Las Vegas, Nevada 89102 tel (702) 475-8899 fax (702) 622-2868 EPA LAB ID: NV00932

Page 16 of 24

Customer Sample ID: WETLAB Sample ID:	TM21-02G 21030632-015					3/17/2021 13:56 3/18/2021 14:51	
Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
Trace Metals by ICP-O	ES						
Aluminum	EPA 200.7	4.72	mg/L	20	1.00	3/26/2021	NV00925
Antimony	EPA 200.7	ND	mg/L	20	0.40	3/26/2021	NV00925
Arsenic	EPA 200.7	1.25	mg/L	20	0.800	3/26/2021	NV00925
Barium	EPA 200.7	ND	mg/L	20	0.40	3/26/2021	NV00925
Beryllium	EPA 200.7	ND	mg/L	20	0.020	3/26/2021	NV00925
Bismuth	EPA 200.7	ND	mg/L	20	2.0	3/26/2021	NV00925
Boron	EPA 200.7	282	mg/L	20	2.00	3/26/2021	NV00925
Cadmium	EPA 200.7	ND	mg/L	20	0.020	3/26/2021	NV00925
Calcium	EPA 200.7	ND	mg/L	20	10	3/26/2021	NV00925
Chromium	EPA 200.7	ND	mg/L	20	0.10	3/26/2021	NV00925
Cobalt	EPA 200.7	ND	mg/L	20	0.20	3/26/2021	NV00925
Copper	EPA 200.7	ND	mg/L	20	0.80	3/26/2021	NV0092
Gallium	EPA 200.7	ND	mg/L	20	2.0	3/26/2021	NV00925
Iron	EPA 200.7	2.32	mg/L	20	2.00	3/26/2021	NV00923
Lead	EPA 200.7	ND	mg/L	20	0.20	3/26/2021	NV0092:
Lithium	EPA 200.7	73.2	mg/L	20	2.00	3/26/2021	NV0092:
Magnesium	EPA 200.7	ND	mg/L	20	10	3/26/2021	NV0092:
Manganese	EPA 200.7	ND	mg/L	20	0.20	3/26/2021	NV00925
Molybdenum	EPA 200.7	2.48	mg/L	20	0.400	3/26/2021	NV00923
Nickel	EPA 200.7	ND	mg/L	20	0.60	3/26/2021	NV00925
Phosphorus	EPA 200.7	ND	mg/L	20	10	3/26/2021	NV00925
Potassium	EPA 200.7	2090	mg/L	20	20.0	3/26/2021	NV00925
Scandium	EPA 200.7	ND	mg/L	20	2.0	3/26/2021	NV0092
Selenium	EPA 200.7	ND	mg/L	20	1.0	3/26/2021	NV00925
Silver	EPA 200.7	ND	mg/L	20	0.10	3/26/2021	NV00925
Sodium	EPA 200.7	56000	mg/L	2000	3000	3/29/2021	NV00925
Strontium	EPA 200.7	ND	mg/L	20	2.0	3/26/2021	NV00923
Thallium	EPA 200.7	ND	mg/L	20	1.0	3/26/2021	NV00923
Tin	EPA 200.7	ND	mg/L	20	2.0	3/26/2021	NV00925
Titanium	EPA 200.7	ND	mg/L	20	2.0	3/26/2021	NV00925
Vanadium	EPA 200.7	ND	mg/L	20	0.20	3/26/2021	NV00923
Zinc	EPA 200.7	ND	mg/L	20	0.40	3/26/2021	NV00923
Sample Preparation							
Trace Metals Digestion (I	Brine) EPA 200.2	W210325-1		1		3/25/2021	NV00925

SPARKS 475 E. Greg Street, Suite 119 Sparks, Nevada 89431 tel (775) 355-0202 fax (775) 355-0817 EPA LAB ID: NV00925 - ELAP No: 2523 ELKO 1084 Lamoille Hwy Elko, Nevada 89801 tel (775) 777-9933 fax (775) 777-9933 EPA LAB ID: NV00926 LAS VEGAS 3230 Polaris Ave. Suite 4 Las Vegas. Nevada 89102 tel (702) 475-8899 fax (702) 622-2868 EPA LAB ID: NV00932

Page 17 of 24

Customer Sample ID: WETLAB Sample ID:	TM21-02H 21030632-016					3/17/2021 14:56 3/18/2021 14:51	
Analyte	Method	Results	Units	DF	RL	Analyzed	LabID
Trace Metals by ICP-O	ES						
Aluminum	EPA 200.7	2.73	mg/L	20	1.00	3/26/2021	NV00925
Antimony	EPA 200.7	ND	mg/L	20	0.40	3/26/2021	NV00925
Arsenic	EPA 200.7	1.22	mg/L	20	0.800	3/26/2021	NV00925
Barium	EPA 200.7	ND	mg/L	20	0.40	3/26/2021	NV00925
Beryllium	EPA 200.7	ND	mg/L	20	0.020	3/26/2021	NV00925
Bismuth	EPA 200.7	ND	mg/L	20	2.0	3/26/2021	NV00925
Boron	EPA 200.7	275	mg/L	20	2.00	3/26/2021	NV00925
Cadmium	EPA 200.7	ND	mg/L	20	0.020	3/26/2021	NV00925
Calcium	EPA 200.7	ND	mg/L	20	10	3/26/2021	NV00925
Chromium	EPA 200.7	ND	mg/L	20	0.10	3/26/2021	NV00925
Cobalt	EPA 200.7	ND	mg/L	20	0.20	3/26/2021	NV00925
Copper	EPA 200.7	ND	mg/L	20	0.80	3/26/2021	NV00925
Gallium	EPA 200.7	ND	mg/L	20	2.0	3/26/2021	NV00925
Iron	EPA 200.7	ND	mg/L	20	2.0	3/26/2021	NV00923
Lead	EPA 200.7	ND	mg/L	20	0.20	3/26/2021	NV0092:
Lithium	EPA 200.7	72.0	mg/L	20	2.00	3/26/2021	NV0092:
Magnesium	EPA 200.7	ND	mg/L	20	10	3/26/2021	NV0092:
Manganese	EPA 200.7	ND	mg/L	20	0.20	3/26/2021	NV00925
Molybdenum	EPA 200.7	2.46	mg/L	20	0.400	3/26/2021	NV00923
Nickel	EPA 200.7	ND	mg/L	20	0.60	3/26/2021	NV00925
Phosphorus	EPA 200.7	ND	mg/L	20	10	3/26/2021	NV00925
Potassium	EPA 200.7	2090	mg/L	20	20.0	3/26/2021	NV00925
Scandium	EPA 200.7	ND	mg/L	20	2.0	3/26/2021	NV00925
Selenium	EPA 200.7	ND	mg/L	20	1.0	3/26/2021	NV00925
Silver	EPA 200.7	ND	mg/L	20	0.10	3/26/2021	NV00923
Sodium	EPA 200.7	54800	mg/L	2000	3000	3/29/2021	NV00923
Strontium	EPA 200.7	ND	mg/L	20	2.0	3/26/2021	NV00925
Thallium	EPA 200.7	ND	mg/L	20	1.0	3/26/2021	NV00923
Tin	EPA 200.7	ND	mg/L	20	2.0	3/26/2021	NV00925
Titanium	EPA 200.7	ND	mg/L	20	2.0	3/26/2021	NV00923
Vanadium	EPA 200.7	ND	mg/L	20	0.20	3/26/2021	NV00925
Zinc	EPA 200.7	ND	mg/L	20	0.40	3/26/2021	NV0092;
Sample Preparation							
Trace Metals Digestion (H	Brine) EPA 200.2	W210325-1		1		3/25/2021	NV00925

SPARKS 475 E. Greg Street, Suite 119 Sparks, Nevada 89431 tel (775) 355-0202 fax (775) 355-0817 EPA LAB ID: NV00925 - ELAP No: 2523 ELKO 1084 Lamoille Hwy Eiko, Nevada 89801 tel (775) 777-9933 fax (775) 777-9933 EPA LAB ID: NV00926 LAS VEGAS 3230 Polaris Ave. Suite 4 Las Vegas, Nevada 89102 tel (702) 475-8899 fax (702) 622-2868 EPA LAB ID: NV00932

Page 18 of 24

Dahrouge Geological Consulting, Ltd. - 21030632

QCBatchID	QCType	Parameter	Method	Result	Actual	% Rec	Units
QC21030882	Blank 1	Aluminum	SW846 6010B	ND			mg/kg
		Antimony	SW846 6010B	ND			mg/kg
		Arsenic	SW846 6010B	ND			mg/kg
		Barium	SW846 6010B	ND			mg/kg
		Beryllium	SW846 6010B	ND			mg/kg
		Bismuth	SW846 6010B	ND			mg/kg
		Boron	SW846 6010B	ND			mg/kg
		Cadmium	SW846 6010B	ND			mg/kg
		Calcium	SW846 6010B	ND			mg/kg
		Chromium	SW846 6010B	ND			mg/kg
		Cobalt	SW846 6010B	ND			mg/kg
		Copper	SW846 6010B	ND			mg/kg
		Gallium	SW846 6010B	ND			mg/kg
		Iron	SW846 6010B	ND			mg/kg
		Lead	SW846 6010B	ND			mg/kg
		Lithium	SW846 6010B	ND			mg/kg
		Magnesium	SW846 6010B	ND			mg/kg
		Manganese	SW846 6010B	ND			mg/kg
		Molybdenum	SW846 6010B	ND			mg/kg
		Nickel	SW846 6010B	ND			mg/kg
		Phosphorus	SW846 6010B	ND			mg/kg
		Potassium	SW846 6010B	ND			mg/kg
		Scandium	SW846 6010B	ND			mg/kg
		Selenium	SW846 6010B	ND			mg/kg
		Silver	SW846 6010B	ND			mg/kg
		Sodium	SW846 6010B	ND			mg/kg
		Strontium	SW846 6010B	ND			mg/kg
		Thallium	SW846 6010B	ND			mg/kg
		Tin	SW846 6010B	ND			mg/kg
		Titanium	SW846 6010B	ND			mg/kg
		Vanadium	SW846 6010B	ND			mg/kg
		Zinc	SW846 6010B	ND			mg/kg
C21030883	Blank 1	Aluminum	SW846 6010B	ND			mg/kg
		Antimony	SW846 6010B	ND			mg/kg
		Arsenic	SW846 6010B	ND			mg/kg
		Barium	SW846 6010B	ND			mg/kg
		Beryllium	SW846 6010B	ND			mg/kg
		Bismuth	SW846 6010B	ND			mg/kg
		Boron	SW846 6010B	ND			mg/kg
		Cadmium	SW846 6010B	ND			mg/kg
		Calcium	SW846 6010B	ND			mg/kg
		Chromium	SW846 6010B	ND			mg/kg
		Cobalt	SW846 6010B	ND			mg/kg
		Copper	SW846 6010B	ND			mg/kg
		Gallium	SW846 6010B	ND			mg/kg
		Iron	SW846 6010B	ND			mg/kg
		Lead	SW846 6010B	ND			mg/kg
		Lithium	SW846 6010B	ND			mg/kg

Western Environmental Testing Laboratory QC Report

DF=Dilution Factor, RL = Reporting Limit (minimum 3X the MDL), ND = Not Detected <RL or <MDL (if listed)

SPARKS 475 E. Greg Street, Suite 119 Sparks, Nevada 89431 tel (775) 355-0202 fax (775) 355-0817 EPA LAB ID: NV00925 - ELAP No: 2523 ELKO 1084 Lamoille Hwy Elko, Nevada 89801 tel (775) 777-9933 fax (775) 777-9933 EPA LAB ID: NV00926 LAS VEGAS 3230 Polaris Ave. Suite 4 Las Vegas, Nevada 89102 tel (702) 475-8899 fax (702) 622-2868 EPA LAB ID: NV00932

Page 19 of 24

QCBatchID	QCType	Parameter	Method	Result	Actual	% Rec	Units
		Magnesium	SW846 6010B	ND			mg/kg
		Manganese	SW846 6010B	ND			mg/kg
		Molybdenum	SW846 6010B	ND			mg/kg
		Nickel	SW846 6010B	ND			mg/kg
		Phosphorus	SW846 6010B	ND			mg/kg
		Potassium	SW846 6010B	ND			mg/kg
		Scandium	SW846 6010B	ND			mg/kg
		Selenium	SW846 6010B	ND			mg/kg
		Silver	SW846 6010B	ND			mg/kg
		Sodium	SW846 6010B	ND			mg/kg
		Strontium	SW846 6010B	ND			mg/kg
		Thallium	SW846 6010B	ND			mg/kg
		Tin	SW846 6010B	ND			mg/kg
		Titanium	SW846 6010B	ND			mg/kg
		Vanadium	SW846 6010B	ND			mg/kg
		Zinc	SW846 6010B	ND			mg/kg
QC21030940	Blank 1	Aluminum	EPA 200.7	ND			mg/L
		Antimony	EPA 200.7	ND			mg/L
		Arsenic	EPA 200.7	ND			mg/L
		Barium	EPA 200.7	ND			mg/L
		Beryllium	EPA 200.7	ND			mg/L
		Bismuth	EPA 200.7	ND			mg/L
		Boron	EPA 200.7	ND			mg/L
		Cadmium	EPA 200.7	ND			mg/L
		Calcium	EPA 200.7	ND			mg/L
		Chromium	EPA 200.7	ND			mg/L
		Cobalt	EPA 200.7	ND			mg/L
		Copper	EPA 200.7	ND			mg/L
		Gallium	EPA 200.7	ND			mg/L
		Iron	EPA 200.7	ND			mg/L
		Lead	EPA 200.7	ND			mg/L
		Lithium	EPA 200.7	ND			mg/L
		Magnesium	EPA 200.7	ND			mg/L
		Manganese	EPA 200.7	ND			mg/L
		Molybdenum	EPA 200.7	ND			mg/L
		Nickel	EPA 200.7	ND			mg/L
		Phosphorus	EPA 200.7	ND			mg/L
		Potassium	EPA 200.7	ND			mg/L
		Scandium	EPA 200.7	ND			mg/L
		Selenium	EPA 200.7	ND			mg/L
		Silver	EPA 200.7	ND			mg/L
		Sodium	EPA 200.7	ND			mg/L
		Strontium	EPA 200.7	ND			mg/L
		Thallium	EPA 200.7	ND			mg/L
		Tin	EPA 200.7	ND			mg/L
		Titanîum	EPA 200.7	ND			mg/L
		Vanadium	EPA 200.7	ND			mg/L
		Zinc	EPA 200.7	ND			mg/L
QCBatchID	QCType	Parameter	Method	Result	Actual	% Rec	Units
QC21030882	LCS 1	Aluminum	SW846 6010B	44.9	50.0	90	mg/kg
		Antimony	SW846 6010B	47.9	50.0	96	mg/kg
		Arsenic	SW846 6010B	47.0	50.0	94	mg/kg

SPARKS 475 E. Greg Street, Suite 119 Sparks, Nevada 89431 tel (775) 355-0202 fax (775) 355-0817 EPA LAB ID: NV00925 - ELAP No: 2523 ELKO 1084 Lamoille Hwy Eiko, Nevada 89801 tel (775) 777-9933 fax (775) 777-9933 EPA LAB ID: NV00926 LAS VEGAS 3230 Polaris Ave. Suite 4 Las Vegas, Nevada 89102 tel (702) 475-8899 fax (702) 622-2868 EPA LAB ID: NV00932

Page 20 of 24

<i>QCBatenin</i>	QCType	Parameter	Method	Result	Actual	% Rec	Units
		Barium	SW846 6010B	49.9	50.0	100	mg/kg
		Beryllium	SW846 6010B	45.8	50.0	92	mg/kg
		Bismuth	SW846 6010B	44.9	50.0	90	mg/kg
		Boron	SW846 6010B	44.7	50.0	89	mg/kg
		Cadmium	SW846 6010B	48.4	50.0	97	mg/kg
		Calcium	SW846 6010B	484	500	97	mg/kg
		Chromium	SW846 6010B	50.1	50.0	100	mg/kg
		Cobalt	SW846 6010B	48.2	50.0	96	mg/kg
		Copper	SW846 6010B	236	250	94	mg/kg
		Gallium	SW846 6010B	44.0	50.0	88	mg/kg
		Iron	SW846 6010B	52.5	50.0	105	mg/kg
		Lead	SW846 6010B	47.7	50.0	96	mg/kg
		Lithium	SW846 6010B	47.8	50.0	96	mg/kg
		Magnesium	SW846 6010B	457	500	91	mg/kg
			SW846 6010B	46.6	50.0	93	mg/kg
			SW846 6010B	51.0	50.0	102	mg/kg
			SW846 6010B	244	250	98	mg/kg
			SW846 6010B	228	250	91	mg/kg
			SW846 6010B	455	500	91	mg/kg
			SW846 6010B	48.8	50.0	98	mg/kg
			SW846 6010B	229	250	92	
			SW846 6010B	4.11	4.50	91	mg/kg
							mg/kg
			SW846 6010B	522	500	104	mg/kg
			SW846 6010B	48.1	50.0	96	mg/kg
			SW846 6010B	49.5	50.0	99	mg/kg
			SW846 6010B	48.3	50.0	97	mg/kg
			SW846 6010B	51.8	50.0	104	mg/kg
			SW846 6010B	49.5	50.0	99	mg/kg
			SW846 6010B	48.5	50.0	97	mg/kg
QC21030883	LCS 1		SW846 6010B	44.9	50.0	90	mg/kg
	Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper Gallium Iron Lead Lithium Magnese Molybdemum Nickel Phosphorus Potassium Scandium Selenium Silver Sodium Silver Sodium Thallium Thallium		SW846 6010B	47.9	50.0	96	mg/kg
			SW846 6010B	47.0	50.0	94	mg/kg
		Barium	SW846 6010B	49.9	50.0	100	mg/kg
		Beryllium	SW846 6010B	45.8	50.0	92	mg/kg
		Bismuth	SW846 6010B	44.9	50.0	90	mg/kg
		Boron	SW846 6010B	44.7	50.0	89	mg/kg
		Cadmium	SW846 6010B	48.4	50.0	97	mg/kg
		Calcium	SW846 6010B	484	500	97	mg/kg
		Chromium	SW846 6010B	50.1	50.0	100	mg/kg
		Cobalt	SW846 6010B	48.2	50.0	96	mg/kg
		Copper	SW846 6010B	236	250	94	mg/kg
		Gallium	SW846 6010B	44.0	50.0	88	mg/kg
		Iron	SW846 6010B	52.5	50.0	105	mg/kg
		Lead	SW846 6010B	47.7	50.0	95	mg/kg
		Lithium	SW846 6010B	47.8	50.0	96	mg/kg
		Magnesium	SW846 6010B	457	500	91	mg/kg
			SW846 6010B	46.6	50.0	93	mg/kg
			SW846 6010B	51.0	50.0	102	mg/kg
			SW846 6010B	244	250	98	mg/kg
			SW846 6010B	228	250	91	mg/kg
		and the second	SW846 6010B	455	500	91	mg/kg
			SW846 6010B	48.8	50.0	98	mg/kg
			SW846 6010B	229	250	92	mg/kg

SPARKS 475 E. Greg Street, Suite 119 Sparks, Nevada 89431 tel (775) 355-0202 fax (775) 355-0817 EPA LAB ID: NV00925 - ELAP No: 2523

ELKO 1084 Lamoille Hwy Elko, Nevada 89801 tel (775) 777-9933 fax (775) 777-9933 EPA LAB ID: NV00926

DAHROUGE Geological Consulting LTD.

LAS VEGAS 3230 Polaris Ave. Suite 4 Las Vegas, Nevada 89102 tel (702) 475-8899 fax (702) 622-2868 EPA LAB ID: NV00932

QCBatchID (QCType	Parameter	Me	thod	Result		Actual	% R	e	Units			
		Silver	SW	846 6010B	4.11		4.50	91	3	mg/kg			
		Sodium	SW	846 6010B	522		500	104		mg/kg			
		Strontium	SW	846 6010B	48.1		50.0	96		mg/kg			
		Thallium	SW	846 6010B	49.5		50.0	99		mg/kg			
		Tin	SW	846 6010B	48.3		50.0	97		mg/kg			
		Titanium	SW	846 6010B	51.8		50.0	104		mg/kg			
		Vanadium	SW	846 6010B	49.5		50.0	99		mg/kg			
		Zinc	SW	846 6010B	48.5		50.0	97		mg/kg			
C21030940 L	CS 1	Aluminum	EPA	200.7	0.996		1.00	100		mg/L			
		Antimony	EPA	200.7	1.01		1.00	101		mg/L			
		Arsenic	EPA	200.7	0.995		1.00	100		mg/L			
		Barium	EPA	200.7	0.992		1.00	99		mg/L			
		Beryllium	EPA	200.7	1.02		1.00	102		mg/L			
		Bismuth	EPA	200.7	1.00		1.00	100		mg/L			
		Boron	EPA	200.7	1.01		1.00	101		mg/L			
		Cadmium	EPA	200.7	0.996		1.00	100		mg/L			
		Calcium	EPA	200.7	10.1		10.0	101		mg/L			
		Chromium	EPA	200.7	0.987		1.00	99		mg/L			
		Cobalt	EPA	200.7	0.997		1.00	100		mg/L			
		Copper	EPA	200.7	5.01		5.00	100		mg/L			
		Gallium	EPA	200.7	1.01		1.00	101		mg/L			
		Iron	EPA	200.7	1.01		1.00	101		mg/L			
		Lead	EPA	200.7	0.991		1.00	99		mg/L			
		Lithium	EPA	200.7	1.00		1.00	100		mg/L			
		Magnesium		200.7	10.1		10.0	101		mg/L			
		Manganese		200.7	1.01		1.00	101		mg/L			
		Molybdenum		200.7	1.02		1.00	102		mg/L			
		Nickel		200.7	4.99		5.00	100		mg/L			
		Phosphorus		200.7	4.97		5.00	99		mg/L			
		Potassium		200.7	9.98		10.0	100		mg/L			
		Scandium		200.7	0.995		1.00	99		mg/L			
		Selenium		200.7	4.91		5.00	98					
		Silver		200.7	0.091		0.090	101		mg/L			
										mg/L			
		Sodium		200.7	10.0 0.995		10.0	100		mg/L			
		Strontium		200.7			1.00	99		mg/L			
		Thallium		200.7	0.981		1.00	98		mg/L			
		Tin		200.7	1.01		1.00	101		mg/L			
		Titanium		200.7	1.02		1.00	102		mg/L			
		Vanadium		200.7	1.00		1.00	100		mg/L			
		Zinc	EPA	200.7	0.995		1.00	100		mg/L			
)CBatchID Q	СТуре	Parameter	Method	Spike Sample	Sample Result		MS Result	MSD Result	Spike Value	Units	MS %Rec	MSD %Rec	RP %
C21030882 MS	1	Aluminum	SW846 6010B	21030631-001	17335	SC	20503	17997	50	mg/kg	NC	NC	NC
		Antimony	SW846 6010B	21030631-001	ND	D,M	10.4	10.5	50	mg/kg	NC	NC	NC
		Arsenic	SW846 6010B	21030631-001	ND	D	52.3	48.8	50	mg/kg	90	75	7
		Barium	SW846 6010B	21030631-001	1517		1664	1412	50	mg/kg	NC	NC	NC
		Beryllium	SW846 6010B	21030631-001	1.00	00771	47.0	42.2	50	mg/kg	92	83	11
		Bismuth	SW846 6010B	21030631-001	ND	D.M	37.4	36.2	50	mg/kg	NC	NC	NC
		Boron	SW846 6010B	21030631-001	114	M	199	169	50	mg/kg	NC	NC	NC
		Cadmium	SW846 6010B	21030631-001	ND		40.0	39.5	50	mg/kg	80	79	1
		Calcium	SW846 6010B	21030631-001	43494		51621	52171	500	mg/kg	NC	NC	NC.
		a manufil and the second secon				and the second				and a di	1.00		

SPARKS
 SPARKS

 475 E. Greg Street, Suite 119

 Sparks, Nevada 89431

 tel (775) 355-0202

 fax (775) 355-0817

 EPA LAB ID: NV00925 - ELAP No: 2523

ELKO ELKO 1084 Lamoille Hwy Elko, Nevada 89801 tel (775) 777-9933 fax (775) 777-9933 EPA LAB ID: NV00926 LAS VEGAS 3230 Polaris Ave. Suite 4 Las Vegas. Nevada 89102 tel (702) 475-8899 fax (702) 622-2868 EPA LAB ID: NV00932

Page 22 of 24

CBatchID	QCType	Parameter	Method	Spike Sample	Sample Result		MS Result	MSD Result	Spike Value	Units	MS %Rec	MSD %Rec	RP %
		Cobalt	SW846 6010B	21030631-001	3.62		43.7	42.6	50	mg/kg	80	79	2
		Copper	SW846 6010B	21030631-001	ND	D	238	216	250	mg/kg	92	65	10
		Gallium	SW846 6010B	21030631-001	ND	D	48.8	45.0	50	mg/kg	86	86	8
		Iron	SW846 6010B	21030631-001	13365	SC	17714	13819	50	mg/kg	NC	NC	NC
		Lead	SW846 6010B	21030631-001	10.0		49.7	49.4	50	mg/kg	79	84	<1
		Lithium	SW846 6010B	21030631-001	99.2	SC	231	143	50	mg/kg	NC	NC	NC
		Magnesium	SW846 6010B	21030631-001	14967	SC	23817	14879	500	mg/kg	NC	NC	NC
		Manganese	SW846 6010B	21030631-001	494	SC	586	479	50	mg/kg	NC	NC	N
		Molybdenum	SW846 6010B	21030631-001	ND	D,M	1 35.2	34.8	50	mg/kg	NC	NC	NO
		Nickel	SW846 6010B	21030631-001	ND	D	212	206	250	mg/kg	82	80	3
		Phosphorus	SW846 6010B	21030631-001	345	М	523	533	250	mg/kg	NC	NC	N
		Potassium	SW846 6010B	21030631-001	10388	SC	13411	10280	500	mg/kg	NC	NC	N
		Scandium	SW846 6010B	21030631-001	ND	D	51.3	46.1	50	mg/kg	97	87	11
		Selenium	SW846 6010B	21030631-001	ND	D	208	203	250	mg/kg	83	81	2
		Silver	SW846 6010B	21030631-001	ND	D	4.13	3.77	4.5	mg/kg	92	84	9
		Sodium	SW846 6010B	21030631-001	15109	SC	16223	13312	500	mg/kg	NC	NC	N
		Strontium	SW846 6010B	21030631-001	374	SC	503	496	50	mg/kg	NC	NC	N
		Thallium	SW846 6010B	21030631-001	10.3		59.5	54.9	50	mg/kg	98	84	8
		Tin	SW846 6010B	21030631-001	ND	D.M	36.8	36.0	50	mg/kg	NC	NC	N
		Titanium	SW846 6010B	21030631-001	308		573	447	50	mg/kg	NC	NC	N
		Vanadium	SW846 6010B	21030631-001	14.9	and.	69.6	62.6	50	mg/kg	109	89	11
		Zinc	SW846 6010B	21030631-001	46.5		96.7	89.7	50	mg/kg	100	103	8
C21030883 N	15 1	Aluminum	SW846 6010B	21030632-002	12462	80	15365	16790	50	mg/kg	NC	NC	N
021000000 N	10 1	Antimony	SW846 6010B	21030632-002	ND	D.M		14.4	50	The Second	NC	NC	N
		Arsenic	SW846 6010B	21030632-002	ND	D	42.6	47.8	50	mg/kg	82	93	12
		Barium	SW846 6010B	21030632-002	118	D	159	47.8	50	mg/kg	82	125	13
			SW846 6010B		ND	D	45.2	50.9	50	mg/kg	90	125	12
		Beryllium		21030632-002	ND		45.2	40.5	50	mg/kg	NC	NC NC	NO
		Bismuth	SW846 6010B	21030632-002	2394					mg/kg			N
		Boron	SW846 6010B	21030632-002		SC	1560	1846	50	mg/kg	NC 70	NC	
		Cadmium	SW846 6010B	21030632-002	ND	D	39.2	45.0	50	mg/kg	78	90	14
		Calcium	SW846 6010B	21030632-002	11446	SC	12263	12661	500	mg/kg	NC	NC	NO
		Chromium	SW846 6010B	21030632-002	4.90		44.7	51.5	50	mg/kg	80	93	14
		Cobalt	SW846 6010B	21030632-002	ND	D	41.5	48.1	50	mg/kg	78	91	15
		Copper	SW846 6010B	21030632-002	ND	D	241	262	250	mg/kg	93	102	8
		Gallium	SW846 6010B	21030632-002	ND	D	45.7	52.1	50	mg/kg	86	99	13
		Iron	SW846 6010B	21030632-002	10454	SC	11740	12422	50	mg/kg	NC	NC	N
		Lead	SW846 6010B	21030632-002	13.4	1222	52.3	58.9	50	mg/kg	78	91	12
		Lithium	SW846 6010B	21030632-002	265	SC		358	50	mg/kg	NC	NC	N
		Magnesium	SW846 6010B	21030632-002	3823	SC	4791	5170	500	mg/kg	NC	NC	N
		Manganese	SW846 6010B	21030632-002	485	SC	548	607	50	mg/kg	NC	NC	N
		Molybdenum	SW846 6010B	21030632-002	ND	D	40.0	44.4	50	mg/kg	78	87	10
		Nickel	SW846 6010B	21030632-002	ND	D	207	238	250	mg/kg	80	92	14
		Phosphorus	SW846 6010B	21030632-002	282	M	465	536	250	mg/kg	NC	NC	N
		Potassium	SW846 6010B	21030632-002	8295	SC	10652	10808	500	mg/kg	NC	NC	NO
		Scandium	SW846 6010B	21030632-002	ND	D	49.7	54.5	50	mg/kg	95	104	9
		Selenium	SW846 6010B	21030632-002	ND	D	198	227	250	mg/kg	79	91	14
		Silver	SW846 6010B	21030632-002	ND	D	3.98	4.29	4.5	mg/kg	88	95	8
		Sodium	SW846 6010B	21030632-002	28065	SC	25043	27724	500	mg/kg	NC	NC	N
		Strontium	SW846 6010B	21030632-002	210	SC	224	283	50	mg/kg	NC	NC	N
		Thallium	SW846 6010B	21030632-002	10.9		55.3	62.1	50	mg/kg	89	103	12
		Tin	SW846 6010B	21030632-002	ND	D	41.2	45.5	50	mg/kg	81	90	10
		Titanium	SW846 6010B	21030632-002	496	SC	686	797	50	mg/kg	NC	NC	N

SPARKS 475 E. Greg Street, Suite 119 Sparks, Nevada 89431 tel (775) 355-0202 fax (775) 355-0817 EPA LAB ID: NV00925 - ELAP No: 2523

ELKO 1084 Lamoille Hwy Elko, Nevada 89801 tel (775) 777-9933 fax (775) 777-9933 EPA LAB ID: NV00926

LAS VEGAS 3230 Polaris Ave. Suite 4 Las Vegas, Nevada 89102 tel (702) 475-8899 fax (702) 622-2868 EPA LAB ID: NV00932

QCBatchID QCType	Parameter	Method	Spike Sample	Sample Result	MS Result	MSD Result	Spike Value	Units	MS %Rec	MSD %Rec	RPE %
	Vanadium	SW846 6010B	21030632-002	15.3	61.3	67.7	50	mg/kg	92	105	10
	Zinc	SW846 6010B	21030632-002	32.3	74.1	85.1	50	mg/kg	84	106	14
QC21030940 MS 1	Aluminum	EPA 200.7	21030632-006	13.9	35.4	35.6	20	mg/L	108	109	$<\!\!1$
	Antimony	EPA 200.7	21030632-006	ND	19.0	19.2	20	mg/L,	95	96	1
	Arsenic	EPA 200.7	21030632-006	0.928	21.5	21.5	20	mg/L	103	103	≤ 1
	Barium	EPA 200.7	21030632-006	ND	18.4	18.3	20	mg/L	91	91	<1
	Beryllium	EPA 200.7	21030632-006	ND	20.8	20.9	20	mg/L	104	104	<1
	Bismuth	EPA 200.7	21030632-006	ND	17.5	17.6	20	mg/L	87	88	<1
	Boron	EPA 200.7	21030632-006	267	283	285	20	mg/L	79	90	<1
	Cadmium	EPA 200.7	21030632-006	ND	18.9	18.9	20	mg/L	95	95	<1
	Calcium	EPA 200.7	21030632-006	10.2	204	205	200	mg/L	97	97	<1
	Chromium	EPA 200.7	21030632-006	ND	18.8	18.8	20	mg/L	94	94	<1
	Cobalt	EPA 200.7	21030632-006	ND	18.6	18.6	20	mg/L	93	93	<1
	Copper	EPA 200.7	21030632-006	ND	96.8	97.0	100	mg/L	97	97	<1
	Gallium	EPA 200.7	21030632-006	ND	18.8	18.8	20	mg/1.	94	94	<1
	Iron	EPA 200.7	21030632-006	8.36	28,1	27.8	20	mg/L	99	97	1
	Lead	EPA 200.7	21030632-006	ND	17.9	17.8	20	mg/L	89	89	<1
	Lithium	EPA 200.7	21030632-006	74.9	95.4	96.2	20	mg/L	102	107	≤ 1
	Magnesium	EPA 200.7	21030632-006	ND	191	192	200	mg/L	93	94	<1
	Manganese	EPA 200.7	21030632-006	0.493	20.1	20.2	20	mg/1.	98	99	<1
	Molybdenum	EPA 200.7	21030632-006	3.84	23.5	23.5	20	mg/L	98	98	<1
	Nickel	EPA 200.7	21030632-006	ND	93.0	93.0	100	mg/L	93	93	<1
	Phosphorus	EPA 200.7	21030632-006	ND	112	112	100	mg/L	103	103	<1
	Potassium	EPA 200.7	21030632-006	1674	1902	1925	200	mg/L	114	125	1
	Scandium	EPA 200.7	21030632-006	ND	19.7	19.7	20	mg/L	99	98	<1
	Selenium	EPA 200.7	21030632-006	ND	92.8	92.7	100	mg/L	92	92	<1
	Silver	EPA 200.7	21030632-006	ND	1.85	1.87	1.8	mg/L	103	104	1
	Sodium	EPA 200.7	21030632-006	52708 5	SC 53268	53333	200	mg/L	NC	NC	NC
	Strontium	EPA 200.7	21030632-006	ND	19.4	19.4	20	mg/L	94	93	<1
	Thallium	EPA 200.7	21030632-006	ND	16.1	16.2	20	mg/L	80	81	<1
	Tin	EPA 200.7	21030632-006	ND	19.1	19.1	20	mg/L	96	95	<1
	Titanium	EPA 200.7	21030632-006	ND	20.8	20.8	20	mg/L	101	101	<1
	Vanadium	EPA 200.7	21030632-006	ND	20.1	20.2	20	mg/L	101	101	<1
	Zinc	EPA 200.7	21030632-006	ND	19.9	19.9	20	mg/L	99	100	<1

SPARKS 475 E. Greg Street, Suite 119 Sparks, Nevada 89431 tel (775) 355-0202 fax (775) 355-0817 EPA LAB ID: NV00925 - ELAP No: 2523 ELKO 1084 Lamoille Hwy Eiko, Nevada 89801 tel (775) 777-9933 fax (775) 777-9933 EPA LAB ID: NV00926 LAS VEGAS 3230 Polaris Ave. Suite 4 Las Vegas, Nevada 89102 tel (702) 475-8899 fax (702) 622-2868 EPA LAB ID: NV00932

Page 24 of 24

WETLAB WESTERN ENVIRONMENTAL TESTING LABORATORY Specializing in Soil, Hazardous Waste and Water Anal									VETLAB Order ID. 21030635 Sparks										
475 E. Greg Street #119 Sparks, Nevada 89431 www.WETLaboratory.com tel (775) 355-0202 fax (775) 355-0817 1084 Lamoille Highway Elko, Nevada 89801 tel (775) 777-9933 fax (775) 777-9933 3230 Polaris Ave., Suite 4 Las Vegas, Nevada 89102 tel (702) 475-8899 fax (702) 776-6152											LV Report Due Date								
											Page of								
Client	DANRO	SHE GEOLOG	ICOL C	SJETI	AG LT	0				1 aug	a ison to also	12.276.15.00	ne Requi	rements					
Address	10183	- 112 STRE	ET SU	TE 103					5 Day*	(25%)		lard	72 Hour*	(50%)					
		Comon Jon,				TSKI	MI						24 Hour* es Will Ap			-			
) GORHAM											-	Report		s Via			
		134-9808							Samples Collacted From Which State? NV_X_CA Other										
Phone	180).	121-1808		or's Name		Cor													
Fax			Project	Daru	- 122	Report	Other Standard QC Required?												
P.O. Nur	TAILS E.C.			lumber						Yes No Yes									
Email		DANROJGE . E				com		NO. OF	-	1 1	Analy	ses	Reque	sted	-	T			
	Billing	Address (if diffe	rent than C	lient Add	Iress)	1.1.1	AM	С		11	1	1	11		1	1			
Compa				_	_		Р	O N			1	1	11	1					
							LE	T	2			1		1					
- insuppor								A	13	1	1			1	1	11			
Phone			Fax				T Y	N	NN	1	1			1	1	11			
Email							P	E	A	1	11	1	1	1	1				
	SA	MPLE ID/LOCAT	ION	DATE	TIME	PRES TYPE	E **	RS	12			1				N			
TM	21-0	14		3/17/21	\$915	1	50	1											
TM21-01A				and the second se	ଡ୍ୟୁଥ୍ୟ	1	50	1	1										
TM21-01B TM21-01C				3/17/2	0932	1	50	1	1										
				3/17/	0946	ł	50	1	1	-									
	21-01			3/17/		1	50		1	-		-	-	1	-				
	21-0			31.31	Ø95Ø	1	54			-		+	-	-	-				
TM	21-0	1r			1300	5	-	•	-	-		-	-	+	-	-			
TM21-019			3/17/21	-	5	52	1	V	-		-	-	-						
TM21-01 H			3/17/21	1515	5	SW	1		-		-	_	-		-				
								1											
Instructio	ns/Comments	s/Special Requiremen	its: SW	Same	LES A	AE L	; B	210	ELM	DST	INTA	EST	50	is 1	Li,	8			
	, ca, No								-		Δ								
	Matrix Key**	DW = Drinking Water V	W = Wastewate	r SW = Surfa	ce Water MW	= Monitorin	g Well \$	SD = :	Solid/Sludg	e SO = :	Sol HW	= Haza	rdous Wa	ste OTH	HER:				
a second second		RVATIVES: 1=U					_						_			=H3PC			
	1 Contraction	1	1		1	nples R	de Angelera						oles R	1.00		/)			
Temp	On Ice	Custody Seal	DATE 3-12.71	TIME	6 Jan	inpres N	Shind	1		-	1	1	~	1	f	T			
3.4°C	(Y)/ N	Y /(N)	3.18.21	1431	VV			-		-			~		-				
°C	Y/N	Y/N							of states		1.0	-	-	-		-			
°C	Y / N	Y/N		-	-	-	-	-		-		-				-			
°C	Y / N	Y/N									-								
		dard Terms and							and the second sec						_	Net 30			
Client/0	Collector attes	sts to the validity and	authenticity of	this (these)) sample(s)	and, is (a	re) awa	are th	at tampe	ring wit	h or int	Initi	ally misi	abeling	g the				
sample	(s) location, d	fate or time of collection of permitted by law,	on may be co	nsidered fra	ing and sub	lect to ted	al acut	AL (IN	AU440.0	00010	- the to	tel con		tion re-	coivor				

WETLAB WESTERN ENVIRONMENTAL TESTING LABORATORY Specializing in Soil, Hazardous Waste and Water Analy 475 E. Greg Street #119 Sparks, Nevada 89431 www.WETLaboratory.com											WETLAB Order ID: 0103003 Sparks_									
											Elko_			-						
-	tel	(775) 355-0202 1	fax (775) 355	i-0817		. Los or du	J. 7.00				LV_									
1084 Lamoille Highway Elko, Nevada 89801 tel (775) 777-9933 fax (775) 777-9933											Repo									
3230 Polaris Ave., Suite 4 Las Vegas, Nevada 89102 tel (702) 475-8899 fax (702) 776-6152												Page 2 of 2								
No. a tan a												irnaround			ments					
Client						650		-	-	-		Standard			-					
Address		83 - 112 5				-					86) <u> </u>			Hour* (5 Hour* (2						
		COMON LON				Tsk	11	11	-		100%)	*Surch	harges V	Vill Apply	/					
Contact	LOHOL	GORMAM /	NEIL 1	AcCar	ww				_	N	/hich Sta			Re	port Resu	lts Via				
Phone (380)1	134-9808	Collect	tor's Name TREJOR MILLS						NVCA Other Compliance Monitoring?					PDF EDD					
Fax			Project	DASW - JEELS MARSH						Yes No					Other					
P.O. Nur	mber		PWS	lumber						Report to Regulatory Agency Yes No					Standard QC Required? Yes No					
Email 🕽	DHNR (DANALOUGE. CO		ILQ. DAHAWGE. Com S					-	,	A	nalyse	es Re	ques	ted					
		Address (if diffe			A	OF C		1		1		1								
Compa	any				P	0				11	1		11							
Addres			-		L	N T				11			11	11						
1 - Carlo Marcoll	Magazine -				E	A		F	1		1	1	11	11						
									10	Tar	11		1	1	11	11				
Email					-	0000	P	E R	la		11		1	11		S				
1-1-	SA	AMPLE ID/LOCAT	ION	DATE	TIME	PRES TYPE	E **	S	2				1			N				
TM	21-02	7.7/21	12.04	1	50	1	/													
	21-02	717/21	1202	L	50	1	1													
	21-02			3/17/21	1205	1	50	1	1											
	21-03		9	3/17/2	1220)	50	1	1											
	1-02		-	3/17/22	1222	1	50	1	1											
200	and the second se		0	3/13/2	1266	5	لمغ	1	1											
TM21-02F				3/17/.		5	500		1	1		-								
JM21-02 G				3/3/	1356	2	54	1	1			-	-		-					
TM	21-02	H		7.721	1456	2	212	1	-		-	-	-							
	-		-	-			-	-				_	-							
		s/Special Requiremen	its: Sw	SAMP	les A	RE L	-i 6	Sa.	NE	; M	OST	INTR	\$57	EQ.	WL	i, 8,				
Mg,	Ca, Na	, K, Ba					_	_		_	_	-	_	_						
Sample	Matrix Key**	DW = Drinking Water V	/W = Wastewater	SW = Surfac	e Water MW	= Monitorin	g Well	SD = :	Solid/SI	udge S	0 = Shi	HW = H	azardos	is Waste	OTHER:					
SAMPL	E PRESE	RVATIVES: 1=Ur	preserved a	2=H2SO4	3=NaOH	4=HCI	5=HN	103	6=Na	2520	03 7=	ZnOAc	+NaO	H 8=I	NH4CI	9=H3PO				
Temp	On Ice	Custody Seal	DATE	TIME	San	nples R	elinq	uist	ned E	By		Sa	mple	s Red	ceived	Ву				
3.4°C	YIN	Y (N)	3-18-21	1451	V		-	1	>	>	T	N	n	n	D	~				
°C	Y/N	Y / N													IN IS.					
°C	Y/N	Y / N																		
°C	Y/N	Y/N																		
	3500 UNC	ndard Terms and	Conditions	apply un	less writ	ten agr	eeme	ints	spec	ify o	therw	ise. Pa	ayme	nt ter	ms are	Net 30.				
Client/C	Collector attes	sts to the validity and	authenticity of	this (these)	sample(s) a	and, is (a	re) awa	are th	at tan	nperin	g with c	or intenti		-						
sample	(s) location (date or time of collecti ent permitted by law,	on may be cor	isidered frai	ud and subj	ect to leg	al actio	on (N	AC44	5.0636	5).	1	nitiai							

